首页> 外文期刊>International journal of comadem >A Two-Stage Neural Network Classifier for Condition-based Maintenance in Wireless Sensor Networks
【24h】

A Two-Stage Neural Network Classifier for Condition-based Maintenance in Wireless Sensor Networks

机译:用于无线传感器网络中基于状态维护的两阶段神经网络分类器

获取原文
获取原文并翻译 | 示例

摘要

Motor failures in aerospace applications can lead to serious compromises in safety, overall effectiveness, and maintenance costs. In mission critical applications, it is important that motor fault signatures are identified before a failure occurs. It is known that 40% of mechanical failures occur due to bearing faults. Bearing faults can be identified from the motor vibration signatures. Three key contributions are outlined in this paper. First, we develop a low cost test bed for simulating bearing faults in a motor. Second, we develop a wireless sensor module for collection of vibration data from the test bed. Finally, we use a novel two stage neural network to classify various bearing faults using the Generalized Hebbian Algorithm (GHA) in the first stage and a supervised learning vector quantization network (SLVQ) with a self organizing map approach for fault classification in the second stage.
机译:航空航天应用中的电动机故障可能会导致安全性,总体效率和维护成本的严重降低。在关键任务应用中,重要的是在故障发生之前识别电动机故障信号。众所周知,有40%的机械故障是由于轴承故障引起的。轴承故障可以从电动机的振动信号中识别出来。本文概述了三个关键的贡献。首先,我们开发了一种用于模拟电机轴承故障的低成本测试台。其次,我们开发了一种无线传感器模块,用于从测试台收集振动数据。最后,在第一阶段,我们使用新颖的两阶段神经网络使用广义Hebbian算法(GHA)对各种轴承故障进行分类,在第二阶段使用带有自组织映射方法的监督学习矢量量化网络(SLVQ)进行故障分类。

著录项

  • 来源
    《International journal of comadem》 |2010年第2期|p.17-26|共10页
  • 作者单位

    Automation & Robotics Research Institute, University of Texas at Arlington, 7300 Jack Newell Blvd. S., Fort Worth, TX 76118-7115, USA;

    Automation & Robotics Research Institute, University of Texas at Arlington, 7300 Jack Newell Blvd. S., Fort Worth, TX 76118-7115, USA;

    Automation & Robotics Research Institute, University of Texas at Arlington, 7300 Jack Newell Blvd. S., Fort Worth, TX 76118-7115, USA;

    Automation & Robotics Research Institute, University of Texas at Arlington, 7300 Jack Newell Blvd. S., Fort Worth, TX 76118-7115, USA;

    Energy Systems Research Center, University of Texas at Arlington, 416 S. College St., Arlington, Texas 76019-0048;

    Energy Systems Research Center, University of Texas at Arlington, 416 S. College St., Arlington, Texas 76019-0048;

    Signal Processing Inc., 13619 Valley Oak Circle Rockville MD 20850-3572;

    Automation & Robotics Research Institute, University of Texas at Arlington, 7300 Jack Newell Blvd. S., Fort Worth, TX 76118-7115, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    condition-based maintenance; cearing failures; induction motor; artificial neural networks;

    机译:基于状态的维护;严重失败;感应电动机人工神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号