首页> 外文期刊>Concurrency and computation: practice and experience >Improved heterogeneous data fusion and multi-scale feature selectionmethod for lung cancer subtype classification
【24h】

Improved heterogeneous data fusion and multi-scale feature selectionmethod for lung cancer subtype classification

机译:改进的异质数据融合和多尺度特征选择方法肺癌亚型分类

获取原文
获取原文并翻译 | 示例

摘要

The diagnosis of the disease requires a variety of data and indicators. In order to make the computer perform intelligent computation and diagnosis from a doctor's perspective, complementary information between different modal data needs to be taken into account. Meanwhile, the redundancy features with key information should be selected in order to reduce the complexity of calculation. In this study, an adaptive dynamic loss function is proposed to weight different scales in the multi-scale expansion network of pathological images according to the doctor's diagnosis process. And an ant colony algorithm based on maximum information coefficient correlation was designed for unsupervised feature selection of fusion features combined image feature and patient differential genes. Experimental results show that the addition of pathological image information and genetic information plays an important role in the classification of lung cancer subtypes. Compared with other feature selection methods, the proposed algorithm can quickly converge. Combining pathological image and gene expression matrix for cancer diagnosis can improve the diagnostic accuracy of specific patients, with an accuracy of 95.62 and AUC achieves 0.897. The proposed method has high effectiveness and superior performance in the classification of lung cancer.
机译:疾病的诊断需要各种数据和指标。为了使计算机从医生的角度进行智能计算和诊断,需要考虑不同模态数据之间的互补信息。同时,应选择具有关键信息的冗余功能,以降低计算的复杂性。在本研究中,根据医生的诊断过程,提出了一种自适应动态损失功能在病理图像的多尺度扩展网络中重量不同的尺度。并且设计了基于最大信息系数相关性的蚁群算法用于融合的无监督特征选择具有组合图像特征和患者差异基因。实验结果表明,在肺癌亚型的分类中,增加了病理图像信息和遗传信息在肺癌亚型的分类中起着重要作用。与其他特征选择方法相比,所提出的算法可以快速收敛。组合病理学图像和基因表达基质对于癌症诊断可以提高特定患者的诊断准确性,精度为95.62和AUC实现0.897。该方法在肺癌分类中具有高效率和优异的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号