首页> 外文期刊>Concurrency and computation: practice and experience >Task migration computation offloading with low delay for mobile edge computing in vehicular networks
【24h】

Task migration computation offloading with low delay for mobile edge computing in vehicular networks

机译:在车辆网络中的移动边缘计算低延迟的任务迁移计算卸载

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, a new paradigm named mobile edge computing (MEC) is capable of supplying some cloud-like functions at the edges of wireless networks, which enables vehicles to offload the computation intensive tasks on MEC servers with low latency. However, new challenges posed by the complex network environment and the mobility of vehicles are usually not covered by traditional offloading schemes. To solve such problems, we propose a heuristic task migration computation offloading (TMCO) scheme. Compared with traditional ones, TMCO can dynamically choose suitable places to offload the tasks for moving vehicles within deadline. For this purpose, the mobility of vehicle and strict delay deadline are considered comprehensively. We use hash table to store the number of tasks on the corresponding server and use random function to simulate the probability of task offloading. In terms of latency, experimental results suggest that the performance of TMCO is on average 10% higher than that of traditional full offloading schemes.
机译:如今,名为Mobile Edge Computing(MEC)的新范式能够在无线网络的边缘提供一些类似的云功能,这使得车辆能够在MEC服务器上卸载具有低延迟的MEC服务器上的计算密集型任务。然而,复杂的网络环境提出的新挑战和车辆的移动性通常不被传统的卸载方案覆盖。为了解决这些问题,我们提出了一种启发式任务迁移计算卸载(TMCO)方案。与传统方面相比,TMCO可以动态选择合适的地方,以卸载在截止日期内移动车辆的任务。为此,全面地考虑车辆和严格延迟截止日期的移动性。我们使用哈希表来存储相应服务器上的任务数量,并使用随机函数来模拟任务卸载的概率。在潜伏期方面,实验结果表明,TMCO的性能平均高于传统的全卸载方案的10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号