首页> 外文期刊>Concurrency and computation: practice and experience >A computationally intelligent neural network-based nonlinear autoregressive exogenous balancing approach for real-time processing in industrial applications using big data
【24h】

A computationally intelligent neural network-based nonlinear autoregressive exogenous balancing approach for real-time processing in industrial applications using big data

机译:基于计算的基于智能神经网络的非线性自动自动出口外归平衡方法,用于使用大数据的工业应用实时处理

获取原文
获取原文并翻译 | 示例

摘要

Deep learning based neural networks and their variants have gained popularity due to their inherent flexibility to handle unforeseen especially when a chaotic time series big data are required to be dealt with. There are innumerable applications that are beneficiary of vast interest in computational intelligent approaches that include but not limited to robotics, healthcare, transport, industrial, decision making, and gaming. This paper attempts to investigate the effectiveness of using a neural nonlinear autoregressive with exogenous inputs (NARX) controller in an emerging application field of balancing systems like inverted pendulum (IP) using big data. This paper's aim has been to control an IP cart system by designing a neural NARX controller, and the focus is primarily on real-time processing in industrial applications grounded on big data ecosystems. In the proposed work, an IP system is mathematically modeled and first controlled utilizing a combination of classical proportional-integral-derivative (PID) controllers for cart and pendulum. Second, a chaotic time series input-output data are obtained and are used to train two NARX controllers for cart and pendulum, respectively. Both the controllers are designed as single-input single-output systems with one layer each at input and output with suitable number of hidden layers and neurons. Performance comparison of NARX system behavior with PID controller indicates that the NARX controllers successfully adapt to two different kinds of unknown inputs and effectively stabilize the plant. Simulation results confirm that NARX controllers follow the training parameters and exhibit superior performance and overall system stability than PID control. Experimental results demonstrate the effectiveness of the approach.
机译:基于深度学习的神经网络和它们的变体由于其固有的灵活性而受到局面的灵活性,特别是当需要处理混乱的时间序列的大数据时,因此需要处理。有无数的应用程序,这是对包括但不限于机器人,医疗保健,运输,工业,决策和游戏的计算智能方法的受益者。本文试图调查在使用大数据的倒立摆(IP)等倒置系统的新兴应用领域中使用内源性输入(NARX)控制器的神经非线性自回归的有效性。本文的目的是通过设计神经NARX控制器来控制IP CART系统,并且重点主要是在基于大数据生态系统的工业应用中的实时处理。在所提出的工作中,IP系统是在数学上建模的,并首先利用用于推车和摆的经典比例积分 - 衍生物(PID)控制器的组合来控制。其次,获得了混沌时间序列输入输出数据,用于分别为推车和摆动训练两个NARX控制器。这两个控制器都设计为单输入单输出系统,每个单层都有一个层,输入和输出,具有合适数量的隐藏层和神经元。使用PID控制器的NARX系统行为的性能比较表明NARX控制器成功适应两种不同类型的未知输入并有效地稳定植物。仿真结果证实,NARX控制器遵循训练参数,表现出比PID控制更优越的性能和整体系统稳定性。实验结果表明了这种方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号