首页> 外文期刊>Concurrency and computation: practice and experience >An improved artificial bee colony algorithm based on elite search strategy with segmentation application on robot vision system
【24h】

An improved artificial bee colony algorithm based on elite search strategy with segmentation application on robot vision system

机译:一种改进的基于精英搜索策略的人工蜂殖民地算法,具有机器人视觉系统的分段应用

获取原文
获取原文并翻译 | 示例

摘要

Aiming at accelerating the convergence speed and enhancing relative poor local search ability of the traditional artificial bee colony algorithm (ABC), this article introduces an ABC with a new elite search strategy. First, we propose a strategy of recording individuals with high performance. Then bees have more chances to learn from a real elite. In the onlooked bee phase, its updating equation is changed for having more opportunities to search in a valuable area. Furthermore, for saving the value of function evaluations, a new learning equation for the best onlooked bee is proposed. The image segmentation of a robot binocular stereo vision system is a key problem in mechanical robot vision system, but the computation time limits its application. The experimental results show that the proposed algorithm achieves better performance on 10 benchmark functions and the image segmentation problem of mechanical robot in comparison with several other state of the art algorithms.
机译:旨在加速收敛速度和增强传统人造群群算法(ABC)的相对差的地方搜索能力,本文介绍了一个新的Elite搜索策略的ABC。 首先,我们提出了一种录制具有高性能的人的策略。 然后蜜蜂有更多机会从真正的精英中学习。 在裸露的BEE阶段,改变了其更新方程,以便在有价值的地区进行搜索的更多机会。 此外,为了节省函数评估的价值,提出了最佳裸露蜜蜂的新学习方程。 机器人双目立体声视觉系统的图像分割是机械机器人视觉系统中的关键问题,但计算时间限制了其应用。 实验结果表明,与其他算法相比,该算法在10个基准功能和机械机器人的图像分割问题上实现了更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号