首页> 外文期刊>Concurrency and computation: practice and experience >Hybrid Harris Hawk-Salp swarm optimization algorithm-based integrated optimal data placement and task scheduling for improving the user experience in edge computing
【24h】

Hybrid Harris Hawk-Salp swarm optimization algorithm-based integrated optimal data placement and task scheduling for improving the user experience in edge computing

机译:混合哈里斯Hawk-Salp群优化算法的基于集成最优数据放置和任务调度,用于提高边缘计算中的用户体验

获取原文
获取原文并翻译 | 示例

摘要

Edge computing permits the computation process at the edge of the network for enhancing the efficiency of the data access. The problem of optimal data block placement entirely depends on the maximization of interdependent factors, which corresponds to an NP-hard problem. In this paper, the Hybrid Harris Hawk-Salp Swarm-based Optimization, Data Placement and Task Scheduling (HHHSS-ODPTS) scheme is proposed for improving the user experience in edge computing. This data placement is devised considering the popularity and user preference of data blocks, storage capacity of edge server, and the ratio of replacement associated with the edge servers. This proposed scheme utilized a 2/3-approximation method for essential mapping of tasks with generated containers of the edge server. The simulation results confirmed that the proposed HHHSS-ODPTS scheme is better at data response time, response time of tasks, number of the replaced data blocks, and hit rate of tasks with different capacity of data storage, number of required data blocks, and data popularity.
机译:边缘计算允许在网络边缘处的计算过程,以提高数据访问的效率。完全取决于相互依存因子的最大化的最佳数据块放置问题,这对应于NP难题。本文提出了基于混合哈里斯鹰-SalP群的优化,数据放置和任务调度(HHHSS-ortpls)方案,用于改善边缘计算中的用户体验。考虑到考虑数据块,边缘服务器的存储容量以及与边缘服务器相关联的替换之比的流行度和用户偏好。该提出的方案利用了一个2/3近似方法,用于使用边缘服务器的生成容器的任务的基本映射。仿真结果证实,所提出的HHHSS-ortpts方案在数据响应时间内更好,任务响应时间,替换数据块的数量,以及具有不同数据存储容量的任务的命中率,所需数据块的数量以及数据人气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号