首页> 外文期刊>Concurrency and computation: practice and experience >Optimizing resource scheduling based on extended particle swarm optimization in fog computing environments
【24h】

Optimizing resource scheduling based on extended particle swarm optimization in fog computing environments

机译:基于雾计算环境中扩展粒子群优化的资源调度优化

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing (CC) allows on-demand networks to access central computer resources, such as servers, databases, storage, and network services. While clouds can handle enormous amounts of data, they still encounter problems due to insufficient cloud resources. Therefore, another computing model, called fog computing, was introduced. However, the inefficient scheduling of user tasks in fog computing can cause more delays than that in CC. To address the issues of resource utilization, response time, and latency, optimal and efficient techniques are required for the scheduling strategies. In this study, we developed an extended particle swarm optimization (EPSO) algorithm with an extra gradient method to optimize the task scheduling problem in cloud-fog environments. Our primary aim is to improve the efficiency of resources and minimize the time taken to complete tasks. We conducted extensive experiments on the iFogSim simulator in terms of makespan and total cost. We compared the performance of the proposed EPSO method with that of other traditional techniques, such as ideal PSO and modified PSO; the results demonstrated that EPSO achieved a makespan of 342.53 s. Thus, it can be concluded that the performance of the proposed method is comparable to that of other approaches.
机译:云计算(CC)允许按需网络访问中央计算机资源,例如服务器,数据库,存储和网络服务。虽然云可以处理大量数据,但由于云资源不足,它们仍然遇到问题。因此,介绍了另一个称为雾计算的计算模型。然而,雾计算中用户任务的低效调度可能导致比CC中的更多延迟。为了解决资源利用率的问题,调度策略所需的响应时间和延迟,最佳和有效的技术。在这项研究中,我们开发了一种扩展粒子群优化(EPSO)算法,具有额外的渐变方法,以优化云雾环境中的任务调度问题。我们的主要目标是提高资源的效率,并尽量减少完成任务所需的时间。我们在Makespan和总成本方面对IFOGSIM模拟器进行了广泛的实验。我们将建议的EPSO方法与其他传统技术的性能进行了比较,例如理想的PSO和改性PSO;结果表明,EPSO达到了342.53秒的Mapspan。因此,可以得出结论,所提出的方法的性能与其他方法的性能相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号