首页> 外文期刊>Concurrency and computation: practice and experience >Self-training with one-shot stepwise learning method for person re-identification
【24h】

Self-training with one-shot stepwise learning method for person re-identification

机译:单次逐步学习方法进行自我培训,用于人重新识别

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification (Re-ID) aims at identifying the same person across multiple non-overlapping camera views. A number of existing methods have been presented for this task in a fully-supervised manner that requires a large amount of training annotations. However, obtaining high quality labels is extremely time consuming and expensive. In this article, we focus on the semi-supervised person Re-ID and propose a one-shot stepwise learning method to address the above issue. It exploits only one labeled data along with additional unlabeled samples to gradually but steadily improving the discriminative capability of the feature representation. Specifically, we first construct labeled data portion to train Re-ID model. Then we fine-tune the overall system by the following two steps iteratively: (1) assigning the estimated labels to the unlabeled portion; (2) updating the network parameters according to the selected data. During the propagation process, different from conventional sampling method, we propose a novel dynamic sampling strategy to enlarge the pseudo-labeled subset step by step to make the pseudo labels more reliable. On Market-1501, DukeMTMC-ReID and MARS datasets, we conducted extensively experiments to demonstrate that our proposed method contributes indispensably and achieves a very competitive Re-ID performance.
机译:人员重新识别(RE-ID)旨在识别多个非重叠相机视图的同一个人。以完全监督的方式向这项任务提供了许多现有方法,需要大量的培训注释。然而,获得高质量标签非常耗时和昂贵。在本文中,我们专注于半监督人员重新ID,并提出一次性逐步学习方法来解决上述问题。它只利用一个标记的数据以及额外的未标记样本来逐步但稳定地提高特征表示的辨别能力。具体地,我们首先构造标记的数据部分以训练重新ID模型。然后我们通过以下两个步骤微调整个系统,迭代:(1)将估计的标签分配给未标记部分; (2)根据所选数据更新网络参数。在传播过程中,与传统采样方法不同,我们提出了一种新颖的动态采样策略,以通过步骤扩大伪标记的子集,使伪标号更可靠。在Market-1501,Dukemtmc-Reid和Mars数据集,我们进行了广泛的实验,以证明我们的拟议方法不可或缺地贡献并实现了一个非常竞争力的重新识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号