首页> 外文期刊>Concurrency and computation: practice and experience >An energy-efficient clustering algorithm with self-diagnosis data fault detection and prediction for wireless sensor networks
【24h】

An energy-efficient clustering algorithm with self-diagnosis data fault detection and prediction for wireless sensor networks

机译:一种具有自诊断数据故障检测和无线传感器网络预测的节能聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Wireless sensor networks are used to track and regulate physical conditions like temperature and the environment's humidity. Wireless sensor networks with their advanced features are adopted for many real-time applications. The limited capacity batteries usually power the sensor nodes. But the big challenge of limited battery capacity obstructs remote and inaccessible areas where their use is the most favorable. For extending the lifetime of the network, the battery should optimally utilize it for different operations. The requirement toward low complexity and low energy consumption motivate the wireless sensor networks' efficient clustering algorithm. The sensor nodes group into clusters; one sensor node is chosen as a cluster head, and communication to the sink node from the sensor nodes occurs through the cluster head (CH) node. In the proposed method, cluster heads are determined based on the sensor node's weighted metric. The sensor nodes are then self-adaptive by making correct decisions in real-time based on the sensed data, but detected information is often inaccurate due to some mechanical, wireless loss, and battery problems. The erroneous or irrelevant data should be overlooked to avoid unnecessary data transmission, which contributes to reducing the network's lifetime. In the neighborhood-dependent self-diagnosis fault detection technique, the faulty sensed data are filtered at the sensor node itself. In the data prediction algorithm, the filtered data are predicted at the cluster head. All the factors collectively contribute to enhance the network's lifetime. The lifetime improvement of the proposed approach is almost doubled compared with LEACH one time better than QLEACH and ECH, and 51% better than temporal approach.
机译:无线传感器网络用于跟踪和调节温度和环境湿度等物理条件。许多实时应用程序采用了具有其高级功能的无线传感器网络。有限的容量电池通常为传感器节点供电。但电池容量有限的大挑战阻碍了他们使用最有利的远程和无法进入的区域。为了扩展网络的生命周期,电池应最佳地利用它进行不同的操作。对低复杂性和低能耗的要求激励了无线传感器网络的有效聚类算法。传感器节点组分为集群;选择一个传感器节点作为簇头,并且通过簇头(CH)节点发生与来自传感器节点的宿节点的通信。在所提出的方法中,基于传感器节点的加权度量确定群集头。然后,通过基于所感测的数据实时进行正确的决策,传感器节点自适应,但由于某些机械,无线丢失和电池问题,检测到的信息通常不准确。应忽略错误或无关的数据,以避免不必要的数据传输,这有助于降低网络的寿命。在邻域依赖的自诊断故障检测技术中,故障感测数据在传感器节点本身上过滤。在数据预测算法中,在簇头上预测过滤的数据。所有因素都集体有助于提升网络的一生。与QLEACH和ECH相比,拟议方法的寿命改善几乎翻了一番,比QLEACH和ECH更好,而且比时间方法优于51%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号