首页> 外文期刊>Concurrency and computation: practice and experience >Cloud-assisted Parkinson disease identification system for remote patient monitoring and diagnosis in the smart healthcare applications
【24h】

Cloud-assisted Parkinson disease identification system for remote patient monitoring and diagnosis in the smart healthcare applications

机译:云辅助帕金森病鉴定系统,用于智能医疗保健应用中的远程患者监测和诊断

获取原文
获取原文并翻译 | 示例

摘要

The development of a cloud-based Parkinson's disease identification system is identified as one of the most challenging issues for predictive telediagnosis and telemonitoring in the emerging smart healthcare applications. The traditional way of Parkinson's disease identification by clinical parameters is more costly and uncomfortable for rural people to avail the testing and diagnosis from the remote place. So, the cloud-assisted Parkinson's disease identification system (CAPDIS) is proposed based on non-clinical parameters with patient-centric and cost-effective features for helping the poor patients living in rural as well as urban areas. In addition, the proposed system diagnoses the remote patient by examining the symptoms like dysphonia which is identified as the most severe neurodegenerative disorder in the world. Further, the proposed system has experimented with the benchmark voice dataset collected from the University of California-Irvine (UCI) repository. It shows that the proposed CAPDIS system with adaptive linear kernel support vector machines (k-SVM) classifier has significant improvements on detection accuracy, specificity, sensitivity, and Matthews's correlation coefficient scores while comparing to the existing classifiers. Therefore, the proposed adaptive linear k-SVM classifiers provide 10% improvements on prediction accuracy and F1-Score over the existing polynomial, radial basis, and sigmoidal-based k-SVM classifiers.
机译:基于云的帕金森病识别系统的发展被确定为新兴智能医疗保健应用中预测触诊和遥测最具挑战性的问题之一。帕金森疾病鉴定的传统方式对于农村人来说,临床参数的疾病鉴定更为昂贵和不舒服,以利用偏远地点的测试和诊断。因此,基于非临床参数,提出了患者以患者为中心的和经济有效的特征,提出了云辅助帕金森的疾病识别系统(CAPDIS),以帮助患有农村和城市地区的贫困患者。此外,所提出的系统通过检查令人困难的症状,诊断偏远患者,该症状被鉴定为世界上最严重的神经变性障碍。此外,所提出的系统已经尝试了从加利福尼亚州 - 欧文大学(UCI)存储库中收集的基准语音数据集。它表明,具有自适应线性内核支持向量机(K-SVM)分类器的提议的CAPDIS系统对检测准确性,特异性,灵敏度和Matthews的相关系数分数具有显着的改善,同时与现有的分类器进行比较。因此,所提出的自适应线性K-SVM分类器提供了对现有多项式,径向基础和基于Sigmoid的K-SVM分类器的预测精度和F1分数的10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号