首页> 外文期刊>Concurrency and computation: practice and experience >Indian classicalmusical instrument classification using Timbral features
【24h】

Indian classicalmusical instrument classification using Timbral features

机译:印度典型仪器分类使用Timbral特征

获取原文
获取原文并翻译 | 示例

摘要

Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization-based stacked autoencoder. The significance of this research is based on the proposed Cuckoo-dragonfly optimization (CuDro)-based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro-based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively.
机译:当音乐信号到达深刻特征时,乐器分类变得有效。这敦促研究人员开发一种识别音乐信号的自动系统,并将仪器分类通过音乐的乐器。因此,本文提出了一种使用基于优化的堆叠自动化器的印度音乐分类系统的模型。本研究的重要性基于所提出的杜鹃蜻蜓优化(CUDRO)基于堆叠的AutoEncoder,其中建议的Cudro优化列举了堆叠的AutoEncoder以获取准确的分类结果。所提出的Cudro技术是标准Cuckoo搜索(CS)和蜻蜓算法(DA)的组合,使得培训堆叠的AutoEncoder(SAE)的最佳权重。此外,使用所提出的基于CUDRO的堆栈AutoEncoder的乐器分类基于紧凑的功能,例如Timbral特征,并提出了FRMKMFCC功能,这进一步增加了该研究的价值。在有效的乐器分类的研究中,增加了谱峰值,光谱峰值(SK),光谱峰值(SK),光谱偏振,光谱间距相似性,粗糙度,粗糙度。提出的FRMKMFCC特征是分数傅里叶变换和多核方法的集成,以及MEL频率谱系码(MFCC)特征。使用发达的分类方法的分析证实了该方法获得了96.16%的最大精度,灵敏度分别为92.85%的特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号