首页> 外文期刊>Concurrency and computation: practice and experience >Fault tolerant resource allocation in fog environment using game theory-based reinforcement learning
【24h】

Fault tolerant resource allocation in fog environment using game theory-based reinforcement learning

机译:基于博弈论的强化学习,雾环境中的容错资源分配

获取原文
获取原文并翻译 | 示例

摘要

Realtime decision making is associated with an on-demand, latency aware resource allocation. Fog nodes along with cloud infrastructure, when used effectively can ensure real-time decision making. In this article, we propose an efficient resource allocation and fault tolerance mechanism for the fog layer. Our work takes the advantage of game theory, where Nash equilibrium is the initial allocation strategy, which is then passed on to the reinforcement learner. The allocation is done proactively based on the network status and traffic history. The performance of our system is compared with the existing open shortest path first and neural network algorithms. Besides, fault tolerance mechanism has also been proposed which takes the advantage of the fail-over cluster formation to find the link failure and provide an alternate path in the smart switch, which is the networking component of the fog network. The proposed work gives an improved recovery time and average service time in case of failure with a recovery time of 32 ms. The experimental results are justified in terms of improved service time, lower delay, and optimal energy utilization.
机译:实时决策与点播延迟感知资源分配相关联。雾节点以及云基础设施,有效使用时可以确保实时决策。在本文中,我们为雾层提出了一种有效的资源分配和容错机制。我们的工作占据了博弈论的优势,纳什均衡是初步分配策略,然后将其传递给加强学习者。基于网络状态和流量历史,积极完成分配。与现有的开放最短路径第一和神经网络算法进行比较了我们的系统的性能。此外,还提出了容错机制,这取得了失败群集地层的优势,以找到链路故障并提供智能开关中的备用路径,这是雾网络的网络组件。在发生32毫秒的恢复时间的情况下,建议的工作在发生故障时提供了改进的恢复时间和平均服务时间。实验结果在提高的服务时间,延迟较低和最佳能量利用方面是合理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号