首页> 外文期刊>Concurrency and computation: practice and experience >Aweakly supervised tooth-mark and crack detectionmethod in tongue image
【24h】

Aweakly supervised tooth-mark and crack detectionmethod in tongue image

机译:舌映像中弱监督的牙齿标记和裂纹检测方法

获取原文
获取原文并翻译 | 示例

摘要

Tongue diagnosis is one of the primary clinical diagnostic methods in Traditional Chinese Medicine. Recognizing the tooth-marked tongue and the crackled tongue plays an essential role in evaluating the status of patients. Previous methods mainly focus on identifying whether a tongue image is a tooth-marked tongue (cracked tongue) or not, while cannot provide more details. In this study, we propose a weakly supervised method for training the tooth-mark and crack detection model by leveraging fully bounding-box level annotated and coarse image-level annotated tongue images. The proposed model is extended from the YOLO object detection model, and we add several classification branches for recognizing the tooth-marked tongue and cracked tongue. The classification branch aims to predict the coarse label for both coarse-labeled data and fully annotated data. The detection branch is used to locate the position of tooth marks and cracks from the fully annotated data. Finally, we utilize a multitask loss function for training the model. Experimental results on a challenging tongue image dataset demonstrate the effectiveness of our proposed weakly supervised method.
机译:舌诊断是中药中临床诊断方法之一。识别牙齿标记的舌头和裂纹舌头在评估患者的状态方面发挥着重要作用。以前的方法主要专注于识别舌头图像是否是牙齿标记的舌(破裂舌),而不能提供更多细节。在这项研究中,我们提出了一种通过利用完全边界箱级注释和粗糙图像级注释的舌片来训练牙齿标记和裂纹检测模型的弱监督方法。所提出的模型从YOLO对象检测模型扩展,我们添加了几个分类分支,以识别牙齿标记的舌头和裂纹舌。分类分支旨在预测粗标记数据和完全注释数据的粗标签。检测分支用于从完全注释的数据定位牙齿标记和裂缝的位置。最后,我们利用了用于训练模型的多任务丢失功能。挑战性舌头图像数据集的实验结果证明了我们提出的弱监督方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号