首页> 外文期刊>Concurrency and computation: practice and experience >A new diagonal storage for efficient implementation of sparse matrix–vectormultiplication on graphics processing unit
【24h】

A new diagonal storage for efficient implementation of sparse matrix–vectormultiplication on graphics processing unit

机译:一种新的对角线存储,可用于高效实现图形处理单元上的稀疏矩阵 - vectiviplication

获取原文
获取原文并翻译 | 示例

摘要

The sparse matrix-vector multiplication (SpMV) is of great importance in computational science. For multidiagonal sparse matrices that have many long zero sections or scatter points, a great number of zeros are filled to maintain the diagonal structure when using the popular DIA format to store them. This leads to the performance degradation of the DIA kernel. To alleviate the drawback of DIA, we present a novel diagonal storage format, called RBDCS (diagonal compressed storage based on row-blocks), for multidiagonal sparse matrices, and thus propose an efficient SpMV kernel that corresponds to RBDCS. Given that the RBDCS kernel codes must be manually rewritten for different multidiagonal sparse matrices, a code generator is presented to automatically generate RBDCS kernel codes. Experimental results show that the proposed RBDCS kernel is effective, and outperforms HYBMV in the CUSPARSE library, and three popular diagonal SpMV kernels: DIA, HDI, and CRSD.
机译:稀疏矩阵矢量乘法(SPMV)在计算科学方面具有重要意义。 对于具有许多长零区段或散射点的多相稀疏矩阵,当使用流行的DIA格式存储它们时,填充大量零以维持对角线结构。 这导致了DIA内核的性能下降。 为了减轻DIA的缺点,我们介绍了一种名为RBDC(基于行块的对角压缩存储)的新颖的对角存储格式,用于多相稀疏矩阵,因此提出了一种与RBDC对应的有效的SPMV内核。 鉴于RBDCS内核代码必须手动重写不同的多相稀疏矩阵,呈现代码生成器以自动生成RBDCS内核代码。 实验结果表明,拟议的RBDCS内核是有效的,并且在CUSPARSE库中的HYBMV且三种流行的对角线SPMV核,DIA,HDI和CRSD。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号