首页> 外文期刊>Concurrency and computation: practice and experience >Investigation of the performances of advanced image classification-based ground filtering approaches for digital terrainmodel generation
【24h】

Investigation of the performances of advanced image classification-based ground filtering approaches for digital terrainmodel generation

机译:基于先进图像分类的地面滤波方法对数字地带模型生成的滤波方法进行调查

获取原文
获取原文并翻译 | 示例

摘要

The majority of the ground filtering techniques proposed so far use several user-defined parameter values. Since no standard protocols exist to define these parameters, obtaining the optimum filtering performance is very hard, especially in large-extent areas with abrupt topography changes. This, of course, reveals the necessity of some more efficient strategies to ease the ground filtering process in such areas. Utilizing classified images for ground filtering purpose may be of help to achieve this. Hence, this study, for the first time in the literature, investigated the performances of the state-of-the-art machine learning algorithms maximum likelihood (ML), artificial neural network (ANN), support vector machines (SVM), and random forest (RF) in ground filtering of a UAS-based point cloud. The used approaches were based on the assignment of the points corresponding to the ground-related classes to the ground class. Evaluations showed that the SVM-based ground filtering approach achieved the optimum filtering result. The SVM-, ML-, RF-, and ANN-based ground filtering methods achieved the total errors of 13.2%, 16.4%, 19.6%, and 21.9% in the test site, respectively.
机译:迄今为止提出的大部分地面过滤技术都使用多个用户定义的参数值。由于没有存在标准协议来定义这些参数,因此获得最佳滤波性能非常硬,尤其是在具有突然形貌变化的大型区域中。当然,这揭示了一些更有效的策略来缓解这些区域中的地面过滤过程的必要性。利用用于地面过滤的分类图像可能有助于实现这一目标。因此,本研究首次在文献中调查了最先进的机器学习算法的性能最大可能性(ML),人工神经网络(ANN),支持向量机(SVM)和随机基于UAS的点云接地滤波中的森林(RF)。使用的方法基于对与地面类对应的点的分配。评估表明,基于SVM的地面过滤方法实现了最佳滤波结果。 SVM,ML-,RF-和基于ANN的地面过滤方法分别在试验部位的总误差中达到了13.2%,16.4%,19.6%和21.9%的总误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号