首页> 外文期刊>Concurrency and computation: practice and experience >Distributed buildings energy storage charging load forecasting method considering parallel deep learning model
【24h】

Distributed buildings energy storage charging load forecasting method considering parallel deep learning model

机译:分布式建筑物储能充电负荷预测方法考虑并行深度学习模型

获取原文
获取原文并翻译 | 示例

摘要

At present, with total building energy consumption accounts for about 21.33% of the energy consumption of social terminals, the building energy consumption has a tendency to continue to grow. According to the geographical location of users and the local weather conditions, we analyze the energy resources available to users and design a multienergy complementary coupling system. We have taken full account of the use of renewable energy and recovery of waste heat resources. Large-scale increase of electrical equipment, a large number of charging load access to the grid, the power system planning, operation and operation of the electricity market will have a profound impact. The current mode of the supercapacitor and the DC bus determines the mode of operation of the converter. Based on a detailed analysis of each working mode, we design a corresponding control scheme and achieve a smooth transition and switching between modes. Simulation and experiment verify the correctness and effectiveness of the converter and hybrid energy storage control strategy.
机译:目前,总建筑能源消耗占社会终端能源消耗的约21.33%,建筑能源消耗具有继续发展的趋势。根据用户的地理位置和当地天气条件,我们分析了用户可用的能源资源,并设计了多型互补耦合系统。我们充分考虑了使用可再生能源和废热资源的恢复。电气设备的大规模增加,大量充电负荷访问电网,电力系统的电力系统规划,运营和运营的电力市场将产生深远的影响。超级电容器和DC总线的当前模式决定了转换器的操作模式。基于每个工作模式的详细分析,我们设计了相应的控制方案,实现了平滑的转换和模式之间的切换。仿真和实验验证了转换器和混合能量存储控制策略的正确性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号