首页> 外文期刊>Concurrency and computation: practice and experience >Sensitivity reduction of degree histogram publication under node differential privacy via mean filtering
【24h】

Sensitivity reduction of degree histogram publication under node differential privacy via mean filtering

机译:通过平均过滤,节点差异隐私下的度量直方图出版的敏感性降低

获取原文
获取原文并翻译 | 示例

摘要

Publication of nodes' degree information in the form of histogram provides useful information about the graph as well as the risk of privacy disclosure. Under the robust protection of node-differential privacy (node-DP), publishing result's accuracy mainly depends on the global sensitivity of this publishing task. Thus, the reduction of sensitivity is of great importance. Existing methods for degree histogram publication under node-DP are mostly based on limitation of maximum degree, whose sensitivity is still high, leading an unbearable noise scale. In this paper, we innovatively propose a method to tackle this issue. Firstly, we introduce mean filtering to process the histogram, almost halve the original sensitivity. Then, we use a series of techniques to further improve publishing accuracy, instituting a complete workflow for degree histogram publication under node-DP. Experimental results show that our method effectively improves the accuracy.
机译:以直方图的形式出版节点的学位信息提供了关于图表的有用信息以及隐私披露的风险。在节点差异隐私(Node-DP)的强大保护下,发布结果的准确性主要取决于本发布任务的全局敏感性。因此,敏感性的降低具有重要意义。 Node-DP下的学位直方图发布的现有方法主要基于最大程度的限制,其灵敏度仍然很高,引导了一种无法忍受的噪声量表。在本文中,我们创新地提出了一种解决这个问题的方法。首先,我们介绍平均过滤来处理直方图,几乎会减半原始敏感性。然后,我们使用一系列技术来进一步提高发布准确性,在Node-DP下为学位直方图发布提供完整的工作流程。实验结果表明,我们的方法有效提高了准确性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号