首页> 外文期刊>Concurrency and computation: practice and experience >Nimble join: A parallel star join for main memory column-stores
【24h】

Nimble join: A parallel star join for main memory column-stores

机译:nimble加入:一个并行之星加入主内存列 - 存储

获取原文
获取原文并翻译 | 示例

摘要

Column-stores perform significantly better than row-stores on analytical workloads such as those found in data warehouses, decision support, and business intelligence applications. As mainstream data warehouses are growing into multi-terabyte range, decision support queries should be processed in parallel to achieve adequate performance. Researchers of the column-oriented join queries assume an unlimited reserve of main memory and focus on minimising execution time. However, some analytics require a large amount of memory to calculate intermediate results, and some interactive analytics require a fast initial response time even though queries need to process a large amount of data. Motivated by these requirements, we present a new progressive parallel star algorithm for main memory column-stores known as "Nimble Join." Equipped with multi-attribute array table and a novel progressive materialisation technique, Nimble Join requires half the memory space and has two times faster initial response whilst having comparable execution time to the existing algorithm.
机译:列 - 存储比分析工作负载上的行存储更好地更好地执行,例如数据仓库,决策支持和商业智能应用程序中的分析工作负载。由于主流数据仓库成长为多字节范围,应将决策支持查询并行处理,以实现足够的性能。面向列的加入查询的研究人员假设主存储器的无限制储备,并专注于最小化执行时间。然而,一些分析需要大量的内存来计算中间结果,并且一些交互式分析需要快速初始响应时间,即使查询需要处理大量数据。通过这些要求,我们为称为“nimble加入”的主内存列存储的新渐进并行星算法。配备多属性阵列表和新颖的渐进式实质技术,亮度连接需要一半的内存空间,并且具有比现有算法的可比执行时间更快的初始响应速度快。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号