首页> 外文期刊>Concurrency and computation: practice and experience >Graphic process units-based chicken swarm optimization algorithm for function optimization problems
【24h】

Graphic process units-based chicken swarm optimization algorithm for function optimization problems

机译:基于图形过程的鸡舍群优化问题算法

获取原文
获取原文并翻译 | 示例

摘要

This article focuses on how to design an efficient GPU-based chicken swarm optimization (CSO) algorithm (GCSO), so as to improve diversity and speed up convergence by running a large number of populations in parallel. GCSO mainly improves the sequential CSO in three aspects: (i) GCSO modifies the location updating equation of the rooster and proposes a parallel iterative strategy to transform the sequential iteration process into a parallel iterative process, thereby achieving fine-grained parallelism and improving the convergence speed. (ii) A multirange search strategy is proposed to build different neighborhoods for each flock on the graphic process units (GPU), so that each flock searched in their respective neighborhoods, thus increasing the density and diversity of the search, and making it not easy to fall into a local optimum. (iii) A new column storage structure is designed to meet the requirement of coalescent access on GPU. Twelve benchmark functions are selected to compare GCSO algorithm with some sequential intelligence optimization algorithms and the GPU-based particle swarm algorithm. The results show that the GCSO is able to obtain a speedup up to163.09xcompared with the CSO and achieve better optimization results in terms of both optimization accuracy and convergence speed than some intelligence optimization algorithms.
机译:本文侧重于如何设计高效的基于GPU的鸡舍优化(CSO)算法(GCSO),以通过运行大量的并行群体来改善多样性和加速汇聚。 GCSO主要改善了三个方面的顺序CSO:(i)GCSO改变公鸡的位置更新方程,提出了一种平行的迭代策略来将连续迭代过程转化为平行迭代过程,从而实现细粒度的并行性并提高收敛性并提高收敛速度。 (ii)提出了一种多个搜索策略,为图形过程单元(GPU)上的每个群构建不同的社区,以便在其各自的社区中搜索每个群体,从而增加了搜索的密度和多样性,并使其不容易落入本地最佳。 (iii)旨在满足GPU对GPU的结束通道的要求。选择12个基准函数以比较GCSO算法与一些顺序智能优化算法和基于GPU的粒子群算法。结果表明,GCSO能够获得高达163.09倍的加速,与CSO相比,从优化精度和收敛速度方面实现更好的优化结果,而不是一些智能优化算法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号