首页> 外文期刊>Concurrency and computation: practice and experience >Dynamic community detection method based on an improved evolutionary matrix
【24h】

Dynamic community detection method based on an improved evolutionary matrix

机译:基于改进进化矩阵的动态群落检测方法

获取原文
获取原文并翻译 | 示例

摘要

Most of networks in real world obviously present dynamic characteristics over time, and the community structure of adjacent snapshots has a certain degree of instability and temporal smoothing. Traditional Temporal Trade-off algorithms consider that communities found at time t depend both on past evolutions. Because this kind of algorithms are based on the hypothesis of short-term smoothness, they can barely find abnormal evolution and group emergence in time. In this paper, a Dynamic Community Detection method based on an improved Evolutionary Matrix (DCDEM) is proposed, and the improved evolutionary matrix combines the community structure detected at the previous time with current network structure to track the evolution. Firstly, the evolutionary matrix transforms original unweighted network into weighted network by incorporating community structure detected at the previous time with current network topology. Secondly, the Overlapping Community Detection based on Edge Density Clustering with New edge Similarity (OCDEDC_NS) algorithm is applied to the evolutionary matrix in order to get edge communities. Thirdly, some small communities are merged to optimize the community structure. Finally, the edge communities are restored to the node overlapping communities. Experiments on both synthetic and real-world networks demonstrate that the proposed algorithm can detect evolutionary community structure in dynamic networks effectively.
机译:现实世界中的大多数网络明显呈现动态特性随着时间的推移,相邻快照的社区结构具有一定程度的不稳定和时间平滑。传统的时间权衡算法认为,在时间t发现的社区都取决于过去的演变。因为这种算法基于短期平滑度的假设,所以它们几乎无法找到异常的进化和群体的出现。本文提出了一种基于改进的进化矩阵(DCDEM)的动态群落检测方法,并且改进的进化矩阵将在前一次检测到的社区结构与当前网络结构相结合,以跟踪进化。首先,进化矩阵通过在前一段时间内通过当前网络拓扑中检测到的社区结构来将原始的未加权网络转换为加权网络。其次,基于边缘密度聚类的重叠群落检测与新的边缘相似度(ocdedc_ns)算法应用于进化矩阵以获得边缘社区。第三,一些小社区被合并以优化社区结构。最后,边缘社区恢复到节点重叠的社区。综合性和现实网络的实验表明,所提出的算法有效地检测动态网络中的进化群落结构。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号