首页> 外文期刊>Concurrency and computation: practice and experience >Algorithms for reducing reconfiguration overheads using prefetch, reuse, and optimal mapping of tasks
【24h】

Algorithms for reducing reconfiguration overheads using prefetch, reuse, and optimal mapping of tasks

机译:使用预取,重用和任务的最佳映射来减少重新配置开销的算法

获取原文
获取原文并翻译 | 示例

摘要

Field Programmable Gate Arrays (FPGAs) are preferred in the modern embedded system to accelerate the performance of the entire system. However, the FPGAs are liable to suffer from reconfiguration overheads. These overheads are mainly because of the configuration data being fetched from the off-chip memory at run-time and due to the improper management of tasks during execution. To reduce these overheads, two algorithms are proposed. Both the algorithms focus on the prefetch heuristics, reuse technique, and an optimal mapping of tasks over the available memories. However, in terms of reusing technique, algorithm-1 uses least recently used (LRU) policy and algorithm-2 uses the optimal replacement policy (considering the vitality of the reconfigurable units (RUs)). Simulation results are obtained for both the algorithms. It is evident from the result that most of the reconfiguration overheads are eliminated when the applications are managed and executed based on the proposed algorithms. Also, the two algorithm results are compared and analyzed. For this purpose, the experiments included smaller and larger task graphs. In the case of smaller task graphs, algorithm-2 outperforms algorithm-1 in reducing reconfiguration overheads. In larger task graphs, algorithm-1 produces better results compared to algorithm-2.
机译:现场可编程门阵列(FPGA)在现代嵌入式系统中是优选的,以加速整个系统的性能。然而,FPGA易于遭受重新配置的开销。这些开销主要是因为在运行时从片外存储器中获取的配置数据,并且由于在执行期间的任务管理不当。为了减少这些开销,提出了两种算法。算法均侧重于预取启发式,重复使用技术以及可用存储器对任务的最佳映射。然而,就重用技术而言,算法-1使用最近使用最近使用的(LRU)策略和算法-2使用最佳替换策略(考虑到可重构单位(Rus)的活力)。仿真结果是为算法获得的。从结果是显而易见的,即基于所提出的算法管理和执行应用程序而消除了大多数重新配置开销。此外,将两种算法进行了比较和分析。为此目的,实验包括更小和更大的任务图。在较小的任务图的情况下,算法-2占算法-1减少重新配置开销。在较大的任务图中,与算法-2相比,算法-1产生更好的结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号