首页> 外文期刊>Concurrency and computation: practice and experience >A polynomial-time algorithm for simple undirected graph isomorphism
【24h】

A polynomial-time algorithm for simple undirected graph isomorphism

机译:一种简单的无向图同构术的多项式算法

获取原文
获取原文并翻译 | 示例

摘要

The graph isomorphism problem is to determine two finite graphs that are isomorphic which is not known with a polynomial-time solution. This paper solves the simple undirected graph isomorphism problem with an algorithmic approach as NP=P and proposes a polynomial-time solution to check if two simple undirected graphs are isomorphic or not. Three new representation methods of a graph as vertex/edge adjacency matrix and triple tuple are proposed. A duality of edge and vertex and a reflexivity between vertex adjacency matrix and edge adjacency matrix were first introduced to present the core idea. Beyond this, the mathematical approval is based on an equivalence between permutation and bijection. Because only addition and multiplication operations satisfy the commutative law, we propose a permutation theorem to check fast whether one of two sets of arrays is a permutation of another or not. The permutation theorem was mathematically approved by Integer Factorization Theory, Pythagorean Triples Theorem, and Fundamental Theorem of Arithmetic. For each of two n-ary arrays, the linear and squared sums of elements were respectively calculated to produce the results.
机译:图中的图形问题是确定两个有限的图,该图是具有多项式时间解决方案未知的同性。本文解决了具有算法方法的简单无向图同构问题,作为NP = P,提出了多项式时间解决方案,以检查两个简单的无向图是同构。提出了一种作为顶点/边缘邻接矩阵和三元组的图表的三种新的表示方法。首先引入了边缘和顶点的二元性和顶点与边缘邻接矩阵之间的反射性以呈现核心思想。除此之外,数学批准基于排列和自由度之间的等价。因为只有加法和乘法操作满足了换向法,我们提出了一个折射定理来检查两组阵列中的一个是否是另一组或不置换。折射定理是通过整数分解理论,毕达哥拉斯三元定理和算术的基本定理的数学批准。对于两个N-ARY阵列中的每一个,分别计算出的元素的线性和平方和以产生结果。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第7期|e.5484.1-e.5484.24|共24页
  • 作者单位

    Nanjing Univ Finance & Econ Inst Informat Technol Nanjing Jiangsu Peoples R China|Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia|John St Hawthorn Vic 3122 Australia;

    Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

    Deakin Univ Sch Informat Technol Melbourne Vic Australia;

    Nanjing Univ Finance & Econ Inst Informat Technol Nanjing Jiangsu Peoples R China;

    Nanjing Univ Finance & Econ Inst Informat Technol Nanjing Jiangsu Peoples R China;

    Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

    Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

    Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

    Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

    Nanjing Univ Posts & Telecommun Jiangsu High Technol Res Key Lab Wireless Sensor Nanjing Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Jiangsu High Technol Res Key Lab Wireless Sensor Nanjing Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Jiangsu High Technol Res Key Lab Wireless Sensor Nanjing Jiangsu Peoples R China;

    Ningbo Univ Dept Informat Sci & Engn Ningbo Zhejiang Peoples R China;

    Zhejiang Univ Ningbo Inst Technol Ningbo Zhejiang Peoples R China;

    Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

    CSIRO Hobart Tas Australia;

    CSIRO Hobart Tas Australia;

    JingQi Smart Healthcare Pty Ltd Hefei Anhui Peoples R China;

    JingQi Smart Healthcare Pty Ltd Hefei Anhui Peoples R China;

    Hong Kong Polytech Univ Dept Appl Math Hong Kong Peoples R China;

    Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing Peoples R China;

    Monash Univ Fac Informat Technol Melbourne Vic Australia;

    Royal Brisbane & Womens Hosp Herston Qld Australia;

    Royal Brisbane & Womens Hosp Herston Qld Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    equivalence between permutation and bijection; graph isomorphism; polynomial-time solution; reflexivity and duality; simple undirected graph; vertex; edge adjacency matrix;

    机译:置换与施法之间的等价;图同构;多项式 - 时间解决方案;反射性和二元性;简单的无向图;顶点;边缘邻接矩阵;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号