首页> 外文期刊>Concurrency and computation: practice and experience >Person re-identification in the edge computing system: A deep square similarity learning approach
【24h】

Person re-identification in the edge computing system: A deep square similarity learning approach

机译:人员重新识别边缘计算系统:深度方貌性学习方法

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of mobile phones and webcams has led to an exponential increase in video data. One of the key technologies of video surveillance systems is Person Re-identification (Re-ID). The Re-ID is used to identify whether the target pedestrian is the same person, and through scene matching, cross-field tracking and track prediction of suspected pedestrians can be achieved. The edge computing has become the first choice for video analysis and processing, because of shorter response time and more efficient processing. In this paper, we propose a deep square similarity learning (DSSL), which considers the difference correlation, first-order correlation, and two-order correlation of image pairs. The training data automatically adjusts the network parameters and the weights of the three correlations to minimize the loss of the training set. Moreover, we conducted experiments on the challenging Re-ID databases CuHK03 and Male1501. Compared with algorithm IDLA and DHSL, the first recognition rate is increased by 18% and 40%, respectively, in CuHK03, and 22% and 80% in Male1501. Then, we propose an online deep square similarity learning (ODSSL) algorithm to solve problem of data updating after the model is established by DSSL strategy. Meanwhile, ODSSL shows shorter update time and more efficient processing.
机译:移动电话和网络摄像头的扩散导致了视频数据的指数增加。视频监控系统的关键技术之一是人重新识别(RE-ID)。 RE-ID用于识别目标行人是否是同一个人,并且通过场景匹配,可以实现涉嫌行人的跨场跟踪和轨道预测。由于响应时间和更有效的处理较短,边缘计算已成为视频分析和处理的首选。在本文中,我们提出了一个深度方形相似性学习(DSSL),其考虑了图像对的差异相关性,一阶相关性和两个阶相关性。培训数据自动调整网络参数和三个相关权的权重,以最大限度地减少训练集的丢失。此外,我们对挑战重新ID数据库CUHK03和Maly1501进行了实验。与算法IDLA和DHSL相比,第一个识别率分别增加18%和40%,CUHK03和22%和80%在22%和80%中。然后,我们提出了一个在线深度方形相似性学习(ODSSL)算法来解决DSSL策略建立模型后的数据更新问题。同时,ODSSL显示更短的更新时间和更高效的处理。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号