首页> 外文期刊>Concurrency and computation: practice and experience >Data agility through clustered edge computing and stream processing
【24h】

Data agility through clustered edge computing and stream processing

机译:通过集群边缘计算和流处理的数据敏捷性

获取原文
获取原文并翻译 | 示例

摘要

The Internet of Things is underpinned by the global penetration of network-connected smart devices continuously generating extreme amounts of raw data to be processed in a timely manner. Supported by Cloud and Fog/Edge infrastructures - on the one hand, and Big Data processing techniques - on the other, existing approaches, however, primarily adopt a vertical offloading model that is heavily dependent on the underlying network bandwidth. That is, (constrained) network communication remains the main limitation to achieve truly agile IoT data management and processing. This paper aims to bridge this gap by defining Clustered Edge Computing - a new approach to enable rapid data processing at the very edge of the IoT network by clustering edge devices into fully functional decentralized ensembles, capable of workload distribution and balancing to accomplish relatively complex computational tasks. This paper also proposes ECStream Processing that implements Clustered Edge Computing using Stream Processing techniques to enable dynamic in-memory computation close to the data source. By spreading the workload among a cluster of collocated edge devices to process data in parallel, the proposed approach aims to improve performance, thereby supporting agile data management. The experimental results confirm that such a distributed in-memory approach to data processing at the very edge of an IoT network can outperform currently adopted Cloud-enabled architectures, and has the potential to address a wide range of IoT-related data-intensive time-critical scenarios.
机译:通过连续生成要及时处理的极端数量的网络连接的智能设备的全球渗透因互联网是基础的。通过云和雾/边缘基础设施支持 - 一方面和大数据处理技术 - 另一方面,现有方法主要采用垂直卸载模型,这些模型严重依赖于底层网络带宽。也就是说,(受限)网络通信仍然是实现真正敏捷的物联网数据管理和处理的主要限制。本文旨在通过定义聚类边缘计算 - 一种新方法来实现通过聚类边缘设备在IOT网络的非常正常的快速数据处理,使得能量分配和平衡能够实现相对复杂的计算任务。本文还提出了使用流处理技术实现聚类边缘计算的闪电处理,以使得能够接近数据源的动态内存计算。通过将工作量扩展到一组分割边缘设备中以并行处理数据,所提出的方法旨在提高性能,从而支持敏捷数据管理。实验结果证实,在物联网网络的非常边缘的数据处理中的数据处理的这种分布式内存方法可以优于当前采用了支持云的架构,并且有可能解决各种与IoT相关的数据密集型时间 - 临界情景。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号