首页> 外文期刊>Concurrency and computation: practice and experience >Principal component analysis, hiddenMarkov model, and artificial neural network inspired techniques to recognize faces
【24h】

Principal component analysis, hiddenMarkov model, and artificial neural network inspired techniques to recognize faces

机译:主成分分析,隐藏式模型和人工神经网络启发技术识别面孔

获取原文
获取原文并翻译 | 示例

摘要

Face Recognition is a challenging task for recognizing and detecting the identity of an individual. Although, plethora of work has already been done in the field of pattern recognition still there has been lot which has not been addressed in any of the literature. In the current research, we have presented a comparative analysis using three popularly known techniques for face recognition namely, Principal Components Analysis (PCA) using Eigen Faces, Hidden Markov Model (HMM) using Singular Value Decomposition, and Artificial Neural Network (ANN) using Gabor filters. These techniques are implemented and evaluated using various measuring metrics such as false acceptance, false recognition rate, and so on. We used ORL and Yale Face dataset to test the robustness of implemented algorithms. Results show that ANN model for face recognition outperforms the other two techniques by achieving more accurate results and shows the highest recognition rate of 97.49% on ORL database. Moreover, it is also observed that ANN model shows the minimum error count of about 2.502% on ORL database while it is 3.5% on Yale Face dataset. To evaluate further, the implemented techniques are compared with best known techniques in class implemented by various researchers.
机译:面部识别是一个具有挑战性的任务,用于识别和检测个人的身份。虽然,在模式识别领域已经完成了普遍存在的工作仍然有很多文献尚未解决。在目前的研究中,我们使用了使用奇异值分解的主成分分析(PCA)的主要成分分析(PCA)来介绍了使用三种普遍的人工分析(PCA)的比较分析,使用奇异值分解和人工神经网络(ANN)使用Gabor过滤器。使用诸如错误接受,错误识别率等各种测量度量来实现和评估这些技术。我们使用ORL和YOLE Face数据集来测试实现算法的稳健性。结果表明,通过实现更准确的结果,在ORL数据库上显示最高识别率为97.49%的最高识别率,ANN模型优于其他两种技术。此外,还观察到ANN模型显示ORL数据库上的最小误差计数约为2.502%,而耶鲁脸部数据集是3.5%。为了进一步评估,将实施的技术与各种研究人员实施的课堂上的最佳已知技术进行比较。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号