首页> 外文期刊>Concurrency and computation: practice and experience >Two-dimensional optimal path planning for autonomous underwater vehicle using awhale optimization algorithm
【24h】

Two-dimensional optimal path planning for autonomous underwater vehicle using awhale optimization algorithm

机译:自主水下车辆使用换前优化算法的二维最优路径规划

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a whale optimization algorithm (WOA) based on forward looking sonar to achieve two-dimensional optimal path planning for an autonomous underwater vehicle. The purpose of path planning is not only to effectively avoid threat regions and safely reach the intended target with minimum fuel cost but also to obtain an optimal or near-optimal path in a complex ocean battlefield environment. The WOA, based on the bubble-net attacking behavior of humpback whales, mimics encircling the prey, attacks with a bubble-net method, and search for prey to effectively determine the global optimal solution in the search space. The WOA not only has fast convergence speed and high calculation accuracy but can also effectively balance exploration and exploitation to avoid falling into a local optimum and obtain the global optimal solution. Five sets of experiments are applied to verify the superiority and stability of the WOA. Compared with other algorithms, such as artificial bee colony, bat algorithm, cuckoo search, flower pollination algorithm, moth-flame optimization algorithm, particle swarm optimization, and water wave optimization, the WOA exhibits better optimization performance and stronger robustness. The experimental results reveal that the WOA can find the shortest path compared with all the other algorithms, and it is an effective and feasible method for solving the path planning problem.
机译:本文介绍了基于前瞻性声纳的鲸鱼优化算法(WOA),以实现自主水下车辆的二维最佳路径规划。路径规划的目的不仅可以有效地避免威胁区域,并安全地以最低燃料成本达到预期目标,而且还可以在复杂的海洋战场环境中获得最佳或近最佳路径。 WOA基于驼背鲸的泡沫净攻击行为,模仿捕获的猎物,用气泡网的攻击,并搜索猎物,以有效地确定搜索空间中的全局最优解。 WOA不仅具有快速的收敛速度和高计算精度,而且还可以有效地平衡勘探和开发,以避免落入本地最佳,并获得全球最佳解决方案。采用五组实验来验证WOA的优越性和稳定性。与其他算法相比,如人造蜂殖民地,蝙蝠算法,杜鹃搜索,花授粉算法,飞蛾 - 火焰优化算法,粒子群优化和水波优化,WOA表现出更好的优化性能和更强的鲁棒性。实验结果表明,与所有其他算法相比,WOA可以找到最短的路径,并且是解决路径规划问题的有效和可行的方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号