首页> 外文期刊>Concurrency and computation: practice and experience >High-dimensional data classificationmodel based on random projection and Bagging-support vectormachine
【24h】

High-dimensional data classificationmodel based on random projection and Bagging-support vectormachine

机译:基于随机投影和袋装支持Vectormachine的高维数据分类模型

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the long training time when classifying high-dimensional data, a parallel classification model is proposed based on random projection and Bagging-support vector machine (SVM) to process high-dimensional data. The model first uses random projection to project the input data into the low-dimensional space. Then, we used the Bagging method to construct multiple training data subsets and used SVM to train the training subset in parallel and generate several subclassifiers. Finally, various classifiers vote to determine the category of the test sample. The model has been verified using two standard datasets. The experimental results show that the model can significantly improve the training speed and classification performance of high-dimensional data with little accuracy loss.
机译:针对在分类高维数据时的长期训练时间,基于随机投影和袋装支持向量机(SVM)来提出并行分类模型来处理高维数据。该模型首先使用随机投影将输入数据投影到低维空间中。然后,我们使用了装订方法来构建多个训练数据子集,并使用SVM并行训练训练子集并生成多个子类别。最后,各种分类器投票确定测试样本的类别。该模型已使用两个标准数据集进行验证。实验结果表明,该模型可以显着提高高维数据的训练速度和分类性能,具有很小的精度损耗。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号