首页> 外文期刊>Concurrency and computation: practice and experience >A gastric cancer recognition algorithm on gastric pathological sections based onmultistage attention-DenseNet
【24h】

A gastric cancer recognition algorithm on gastric pathological sections based onmultistage attention-DenseNet

机译:一种基于胃病理性部分的胃癌识别算法,基于Multistage注意力 - Densenet

获取原文
获取原文并翻译 | 示例

摘要

As an important method to diagnose gastric cancer, gastric pathological sections images (GPSI) are hard and time-consuming to be recognized even by an experienced doctor. An efficient method was designed to detect gastric cancer in magnified (20x) GPSI using deep learning technology. A novel DenseNet architecture was applied, modified with a multistage attention module (MSA-DenseNet). To develop this model focusing on gastric features, a two-stage-input attention module was adopted to select more semantic information of cancer. Moreover, the pretraining process was divided into two steps to improve the effect of the attention mechanism. After training, our method achieved a state-of-the-art performance yielding 0.9947 F1 score and 0.9976 ROC AUC on a test dataset. In line with our expectation in clinical practice, a high recall (0.9929) was produced with high sensitivity to the positive samples. These results indicate that this new model performs better than current artificial detection approaches and its effectiveness is therefore validated in cancer pathological diagnoses.
机译:作为诊断胃癌的重要方法,胃病理性切片图像(GPSI)甚至甚至被经验丰富的医生难以耗时。旨在使用深层学习技术检测放大(20x)GPSI中的胃癌的方法。应用了一种新型的DENSENET架构,用多级注意模块(MSA-DENSENET)进行了修改。为了开发专注于胃功能的模型,采用了两级输入的注意力模块来选择更多的癌症语义信息。此外,预先训练过程分为两个步骤,以提高注意机制的影响。在培训之后,我们的方法达到了最先进的性能,产生了0.9947 F1得分和测试数据集的0.9976 Roc Auc。符合我们在临床实践中的期望中,生产高召回(0.9929),并对阳性样品具有高敏感性。这些结果表明,这种新模型比当前人工检测方法更好,因此在癌症病理诊断中验证了其有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号