首页> 外文期刊>Concurrency and computation: practice and experience >Ahierarchical neural model for target-based sentiment analysis
【24h】

Ahierarchical neural model for target-based sentiment analysis

机译:基于目标的情绪分析的AhioRARCHICE模型

获取原文
获取原文并翻译 | 示例

摘要

A convolutional neural network-regional long Short-Term memory (CNN-RLSTM) is proposed, which is a convolutional neural network-regional long short-term memory (CNN-RLSTM) that combines CNN and regional LSTM. The model can effectively distinguish the affective polarity of different targets through a regional LSTM while reducing the training time of the model. In addition, the model can retain the sentiment information of the whole sentence through a CNN network at the sentence level. Experimental results on different data sets show that the CNN-RLSTM model is better than the traditional model and the deep network model.
机译:提出了一种卷积神经网络 - 区域长期短期记忆(CNN-RLSTM),这是结合CNN和区域LSTM的卷积神经网络 - 区域长短期记忆(CNN-RLSTM)。该模型可以通过区域LSTM有效地区分不同目标的情感极性,同时减少模型的训练时间。此外,该模型可以通过句子级别通过CNN网络保留整个句子的情绪信息。不同数据集的实验结果表明,CNN-RLSTM模型优于传统模型和深网络模型。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号