首页> 外文期刊>Concurrency and computation: practice and experience >Task scheduling on heterogeneous multiprocessor systems through coherent data allocation
【24h】

Task scheduling on heterogeneous multiprocessor systems through coherent data allocation

机译:通过相干数据分配对异构多处理器系统的任务调度

获取原文
获取原文并翻译 | 示例

摘要

Energy consumption has become one of the main bottlenecks that limit the performance improvement of heterogeneous multiprocessor systems. In a heterogeneous distributed shared-memory multiprocessor system (HDSMS), each processor can access all the memories, and each data can be stored in different memories. This article aims at addressing the problem of task scheduling and data allocation (TSDA) on HDSMS. To minimize the total energy consumption under a time constraint for TSDA, we propose two algorithms: the extended tree assignment for task scheduling incorporating data allocation (ETATS-DA) and critical path task scheduling and data allocation (CPTSDA). The ETATS-DA algorithm first utilizes the extended tree assignment to search the near optimal solution for task assignment, and then allocates data to memory based on the result of assignment. The CPTSDA algorithm considers TSDA jointly on a critical path simultaneously. Our proposed algorithms perform coherent data allocation under the consideration of best task scheduling by running two different heuristic strategies, respectively, and taking the best result as the final result. We conduct a large number of simulation experiments to test the performance of our algorithms, and the results validate the higher performance of our methods compared with the state-of-the-art algorithms.
机译:能源消耗已成为限制异构多处理器系统性能改进的主要瓶颈之一。在异构分布式共享存储器多处理器系统(HDSMS)中,每个处理器可以访问所有存储器,并且每个数据可以存储在不同的存储器中。本文旨在解决HDSMS上的任务调度和数据分配(TSDA)问题。为了最小化TSDA的时间限制下的总能量消耗,我们提出了两个算法:用于结合数据分配(ETATS-DA)和关键路径任务调度和数据分配(CPTSDA)的任务调度的扩展树分配。 ETATS-DA算法首先利用扩展的树分配来搜索任务分配的近最佳解决方案,然后基于分配结果分配给内存。 CPTSDA算法同时在关键路径上共同考虑TSDA。我们所提出的算法通过分别运行两种不同的启发式策略,在考虑最佳任务调度下执行相干数据分配,并将最佳结果作为最终结果。我们开展大量的模拟实验来测试我们的算法的性能,结果验证了与最先进的算法相比的方法的更高性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号