首页> 外文期刊>Concurrency and computation: practice and experience >Gesture recognition based on surface electromyography-feature image
【24h】

Gesture recognition based on surface electromyography-feature image

机译:基于表面电学图像特征图像的手势识别

获取原文
获取原文并翻译 | 示例

摘要

For the problem of surface electromyography (sEMG) gesture recognition, considering the fact that the traditional machine learning model is susceptible to the sEMG feature extraction method, it is difficult to distinguish the subtle differences between similar gestures. The NinaPro DB1 dataset is used as the research object, and the sEMG feature image and the Convolutional Neural Network (CNN) are combined to recognize 52 gesture movements. The CNN model effectively solves the limitations of traditional machine learning in sEMG gesture recognition, and combines 1-dim convolution kernel to extract deep abstract features to improve the recognition effect. Finally, the simulation experiment shows that compared with the accuracy of the raw-sEMG images based on the CNN and the sEMG-feature-images based on the CNN and sEMG based on the traditional machine learning, the multi-sEMG-features image based on the CNN is the highest, which coming up to 82.54%.
机译:对于表面肌电图(SEMG)手势识别的问题,考虑到传统机器学习模型易受SEMG特征提取方法的影响,难以区分类似手势之间的微妙差异。 NINAPRO DB1数据集用作研究对象,并且SEMG特征图像和卷积神经网络(CNN)组合以识别52个手势运动。 CNN模型有效地解决了SEMG手势识别中传统机器学习的局限性,并结合了1-DIM卷积内核,提取了深度抽象特征以提高识别效果。最后,模拟实验表明,基于传统机器学习的CNN和SEMG基于CNN和SEMG的基于CNN和SEMOG特征图像的RAW-SEMG图像的准确性相比,基于CNN和SEMG CNN最高,其最高可达82.54%。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第6期|e6051.1-e6051.13|共13页
  • 作者单位

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China|Wuhan Univ Sci & Technol Res Ctr Biomimet Robot & Intelligent Measurement Wuhan Peoples R China|Wuhan Univ Sci & Technol Hubei Key Lab Mech Transmiss & Mfg Engn Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Key Lab Met Equipment & Control Technol Minist Educ Wuhan 430081 Peoples R China;

    Univ Portsmouth Sch Comp Portsmouth Hants England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CNN; gesture recognition; sEMG; sEMG-feature image;

    机译:CNN;手势识别;SEMG;SEMG特征图像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号