首页> 外文期刊>Concurrency and computation: practice and experience >Daily tourist flow forecasting using SPCA and CNN-LSTM neural network
【24h】

Daily tourist flow forecasting using SPCA and CNN-LSTM neural network

机译:每日旅游流量预测使用SPCA和CNN-LSTM神经网络

获取原文
获取原文并翻译 | 示例

摘要

Predicting the daily tourism flow of scenic spots is of great significance for improving the management quality and the tourist experience. Affected by complex factors, daily tourism flow data have strong nonlinear characteristics. In this article, a multilayer neural network S-CNNLSTM is put forward to make accurate short-term tourism flow prediction. First, to reduce the redundant information between the influencing factors, sparse principal component analysis is adopted to reduce the data dimension. Then the processed data is input into a deep neural network framework that combines the convolutional neural network (CNN) and long short-term memory (LSTM) network. CNN extracts local trends, and LSTM is introduced to learn the inner law of time series and make prediction. Finally, through the experiments with real data and the comparison algorithms, the stability and practicability of the proposed method are verified.
机译:预测日常旅游流域风景斑点对于提高管理质量和旅游体验具有重要意义。受复杂因素影响,每日旅游流动数据具有强烈的非线性特性。在本文中,提出了一种多层神经网络S-CNNLSTM以进行准确的短期旅游流程预测。首先,为了减少影响因素之间的冗余信息,采用稀疏主成分分析来减少数据维度。然后将处理的数据输入到一个深神经网络框架中,该框架结合了卷积神经网络(CNN)和长短期存储器(LSTM)网络。 CNN提取本地趋势,引入LSTM以学习内部时间序列和预测。最后,通过实验与实际数据和比较算法,验证了所提出的方法的稳定性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号