首页> 外文期刊>Concurrency, practice and experience >Exploration of OpenCL Heterogeneous Programming for Porting SolidificationModeling to CPU-GPU Platforms
【24h】

Exploration of OpenCL Heterogeneous Programming for Porting SolidificationModeling to CPU-GPU Platforms

机译:OpenCL异构规划对CPU-GPU平台的凝固模拟探索

获取原文
获取原文并翻译 | 示例

摘要

This article provides a comprehensive study of OpenCL heterogeneous programming for porting applications to CPU-GPU computing platforms, with a real-life application for the solidification modeling. The aim is to achieve a flexible workload distribution between available CPU-GPU resources and optimize application performance. Considering the solidification application as a use case, we explore the necessary steps required for (i) adaptation of an application to CPU-GPU platforms, and (ii) mapping the application workload onto the OpenCL programming model. The adaptation is based on a reformulation of steps developed previously for CPU-MIC architectures. The mapping process allows us to utilize OpenCL for harnessing CPU and GPU cores using data parallelism, as well as for the management of available compute devices with task parallelism. The resulting OpenCL code's performance and energy efficiency is experimentally studied for two platforms with powerful GPUs of various generations (with Kepler and Volta architectures). The experiments confirm the performance advantage of using computing resources of both GPUs and CPUs. The achieved benefit depends on the relationship between the computing power of CPUs and GPUs. Moreover, this gain entails the growth of the average power that increases the energy consumed during the application execution.
机译:本文提供了对OpenCL异构编程的全面研究,用于将应用程序移植到CPU-GPU计算平台,具有用于凝固建模的实际应用。目的是在可用的CPU-GPU资源之间实现灵活的工作负载分配,并优化应用程序性能。将凝固应用程序视为用例,我们探讨(i)将应用程序适应到CPU-GPU平台所需的必要步骤,(ii)将应用程序工作负载映射到OpenCL编程模型上。自适应基于先前为CPU-MIC架构开发的步骤的重新计算。映射过程允许我们利用OpenCL使用数据并行性使用DataParpsition来利用CPU和GPU核心,以及用于任务并行性的可用计算设备的管理。由此产生的OpenCL代码的性能和能源效率是针对各种强大GPU(具有开孔和Volta架构)的两个平台进行了实验研究的。实验证实了使用GPU和CPU的计算资源的性能优势。实现的好处取决于CPU和GPU的计算能力之间的关系。此外,该增益需要增加平均功率的增长,这增加了应用程序执行期间消耗的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号