首页> 外文期刊>Concurrency, practice and experience >Particle Swarm Optimization (PSO) with fuzzy c means (PSO-FCM)–based segmentation and machine learning classifier for leaf diseases prediction
【24h】

Particle Swarm Optimization (PSO) with fuzzy c means (PSO-FCM)–based segmentation and machine learning classifier for leaf diseases prediction

机译:粒子群优化(PSO)用模糊C装置(PSO-FCM)基于叶片疾病预测的分割和机器学习分类器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an automatic classification technique that uses leaf images some medicinal plants. It is primarily the core reason that drives the research presented here, including the introduction of new innovative segmentation and classification techniques that are deployed to facilitate automatic detection. The major aim of the work is to introduce a new leaf disease prediction technique. The study conducted here a unique but effective image segmentation, feature extraction, as well as plant leaf disease classification. The proposed approach initially preprocesses leaf images of plants thereafter which the diseased sections of the plant are segmented by deploying Particle Swarm Optimization (PSO)-based fuzzy c means segmentation (PSO-FCM), Gaussian Mixture Model (GMM)-based background subtraction. Vein and shape features, edge-based feature extraction, and texture characteristics or texture features (TF) are computed. This methodology classifies the leaves of medicinal plants by deploying the Multiple Kernel Parallel Support Vector Machine (MK-PSVM) classifier. The classifier is implemented via the use of MATLAB classifier. The results are measured using the accuracy, sensitivity, specificity, precision, and F-measure metrics. Experimental results depict that the classifiers that have been proposed here achieve a higher classification accuracy enabling leaf detection.
机译:本文提出了一种自动分类技术,使用叶片图像一些药用植物。它主要是推动此处提出的研究的核心原因,包括引入部署的新的创新分割和分类技术,以便于自动检测。这项工作的主要目标是引入新的叶疾病预测技术。该研究在这里进行了独特但有效的图像分割,特征提取,以及植物叶病分类。所提出的方法最初通过展开粒子群优化(PSO)的模糊C装置分割(PSO-FCM),基于后背景减法,将植物的叶片图像的叶片图像预处理植物的叶片图像进行分割。静脉和形状特征,基于边缘的特征提取,以及纹理特性或纹理特征(TF)。该方法通过部署多个内核并联支持向量机(MK-PSVM)分类器来分类药用植物的叶子。通过使用MATLAB分类器来实现分类器。使用精度,灵敏度,特异性,精度和F测量度量来测量结果。实验结果描绘了已经提出的分类器,这实现了更高的分类精度,使叶片检测能够。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号