首页> 外文期刊>Concurrency, practice and experience >Cyberbullying detection in social media text based on character-level convolutional neural network with shortcuts
【24h】

Cyberbullying detection in social media text based on character-level convolutional neural network with shortcuts

机译:基于快捷方式的字符级卷积神经网络的社交媒体文本中的网络欺凌检测

获取原文
获取原文并翻译 | 示例

摘要

As people spend increasingly more time on social networks, cyberbullying has become a social problem that needs to be solved by machine learning methods. Our research focuses on textual cyberbullying detection because text is the most common form of social media. However, the content information in social media is short, noisy, and unstructured with incorrect spellings and symbols, and this impacts the performance of some traditional machine learning methods based on vocabulary knowledge. For this reason, we propose a Char-CNNS (Character-level Convolutional Neural Network with Shortcuts) model to identify whether the text in social media contains cyberbullying. We use characters as the smallest unit of learning, enabling the model to overcome spelling errors and intentional obfuscation in real-world corpora. Shortcuts are utilized to stitch different levels of features to learn more granular bullying signals, and a focal loss function is adopted to overcome the class imbalance problem. We also provide a new Chinese Weibo comment dataset specifically for cyberbullying detection, and experiments are performed on both the Chinese Weibo dataset and the English Tweet dataset. The experimental results show that our approach is competitive with state-of-the-art techniques on cyberbullying detection task.
机译:随着人们在社交网络上越来越多的时间,网络欺凌已经成为一个社会问题,需要通过机器学习方法解决。我们的研究侧重于文本的网络束缚检测,因为文本是最常见的社交媒体形式。但是,社交媒体中的内容信息短暂,嘈杂,并不具有错误的拼写和符号,并且这影响了基于词汇知识的传统机器学习方法的性能。因此,我们提出了一个Char-CNNS(具有快捷方式的字符级卷积神经网络)模型,以确定社交媒体中的文本是否包含网络欺凌。我们使用字符作为学习的最小单位,使模型能够克服真实世界上的拼写错误和故意混淆。利用快捷方式针对不同程度的特征来了解更多的粒度欺凌信号,采用焦损函数来克服类别不平衡问题。我们还提供专门用于网络欺凌检测的新中国微博评论数据集,并在中文微博数据集和英文推文数据集上执行实验。实验结果表明,我们的方法对网络欺凌检测任务的最先进技术竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号