首页> 外文期刊>Concurrency, practice and experience >Multiattribute approximate nearest neighbor search based on navigable small world graph
【24h】

Multiattribute approximate nearest neighbor search based on navigable small world graph

机译:基于可通航小世界图的多临时近似邻近搜索

获取原文
获取原文并翻译 | 示例

摘要

Approximate nearest neighbor search (ANNS) is widely employed to find the most similar data efficiently from a large-scale dataset. The key of ANNS is to construct an effective index to prune the search space and retrieve the approximate data rather than the exact one in a very short time. Most of the existing ANNS methods only adopt the distance metric to build an index, which cannot support multiattribute ANNS. In this article, we present a novel approach for multiattribute ANNS based on navigable small world (NSW) graph, called MA-NSW. Given a dataset, MA-NSW (i) builds a proximity subgraph overlay for each multiattribute combination, and integrates all overlays to a hierarchical index, (ii) adopts a navigation tree to access related subgraph overlay and prune unrelated overlays, and (iii) gets nearest neighbor results from the related overlays by greedy search. MA-NSW guarantees efficiency and it is defined in terms of arbitrary metric spaces (eg, Euclidean distance and cosine similarity). Performance evaluation has demonstrated that the proposed approach shows superior performance in multiattribute ANNS.
机译:近似最近邻(ANN)广泛用于从大规模数据集中有效地找到最相似的数据。 Anns的关键是构建有效索引来修剪搜索空间,并在很短的时间内检索近似数据而不是精确的数据。大多数现有的ANNS方法仅采用距离度量来构建索引,这不能支持MultiTigitibute Ann。在本文中,我们为基于可导航的小世界(NSW)图表的多特征Anns提出了一种新的方法,称为MA-NSW。给定数据集,MA-NSW(i)为每个MultiTtribute组合构建一个接近子图叠加层,并将所有叠加到分层索引集成到分层索引,(ii)采用导航树访问相关的子图覆盖和修剪不相关的覆盖,(iii)通过贪婪搜索获得最近的邻居结果。 MA-NSW保证效率,并且它在任意度量空间(例如,欧几里德距离和余弦相似度)中定义。绩效评估表明,该方法在多目标安氏方面表现出卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号