首页> 外文期刊>Concurrency, practice and experience >Feature extraction based on deep-convolutional neural network for face recognition
【24h】

Feature extraction based on deep-convolutional neural network for face recognition

机译:基于深卷积神经网络的面部识别特征提取

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction is a critical technology that affects the accuracy of face recognition. However, certain features are highly related to changes in face are difficult to extract because of the influences of individual differences and illumination. Therefore, features can accurately describe the changes in face are urgently required. For this reason, this article proposes a feature extraction method based on deep learning. This method combines the features extracted by Local Binary Patterns and by Convolutional Neural Network convolutional layer in the network connection layer, thus obtaining classification features with high representation ability and solving the problem of single feature extraction. The VGG-16 network proposed in this article has been improved by changing the framework structure. Some experiments based on the Labeled Faces in the Wild dataset are performed, and results show that, in terms of accuracy and the sensitivity to light, the proposed method reaches 99.56% and 80.35% respectively. The recognition results obtained from fused features are superior to which of single feature recognition. Simulation results show that the method is more robust to changes in the illumination condition and more efficient than the existing methods.
机译:特征提取是一种影响人脸识别准确性的关键技术。然而,由于个体差异和照明的影响,某些特征与面部的变化很难提取。因此,特征可以准确地描述迫切需要的面部的变化。出于这个原因,本文提出了一种基于深度学习的特征提取方法。该方法将由局部二进制图案提取的特征和通过网络连接层中的卷积神经网络卷积层组合,从而获得具有高表示能力的分类特征并解决单个特征提取问题。通过改变框架结构,本文提出的VGG-16网络已经提高。基于野生数据集的标记面的一些实验进行,结果表明,就准确性和对光的敏感而言,所提出的方法分别达到99.56%和80.35%。从融合特征获得的识别结果优于单一特征识别的结果。仿真结果表明,该方法对照明条件的变化更加强大,比现有方法更有效。

著录项

  • 来源
    《Concurrency, practice and experience》 |2020年第22期|e5851.1-e5851.14|共14页
  • 作者

    Li Xiaolin; Niu Haitao;

  • 作者单位

    Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing Peoples R China|Chongqing Univ Posts & Telecommun Res Ctr New Telecommun Technol Applicat Chongqing Peoples R China|Chongqing Informat Technol Designing Co Ltd Chongqing Peoples R China;

    Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing Peoples R China|Chongqing Univ Posts & Telecommun Res Ctr New Telecommun Technol Applicat Chongqing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    deep learning; face recognition; feature extraction; illumination; VGG-Net;

    机译:深入学习;面部识别;特征提取;照明;VGG网;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号