首页> 外文期刊>Concurrency, practice and experience >Task-based parallel strategies for computational fluid dynamic application in heterogeneous CPU/GPU resources
【24h】

Task-based parallel strategies for computational fluid dynamic application in heterogeneous CPU/GPU resources

机译:基于任务的不同CPU / GPU资源计算流体动态应用的并行策略

获取原文
获取原文并翻译 | 示例

摘要

Parallel applications executing in contemporary heterogeneous clusters are complex to code and optimize. The task-based programming model is an alternative to handle the coding complexity. This model consists of splitting the problem domain into tasks with dependencies through a directed acyclic graph, and submit the set of tasks to a runtime scheduler that maps each task dynamically to resources. We consider that computational fluid dynamics applications are typical in scientific computing but not enough exploited by designs that employ the task-based programming model. This article presents task-based parallel strategies for a simple CFD application that targets heterogeneous multi-CPU/multi-GPU computing resources. We design, develop, evaluate, and compare the performance of three parallel strategies (naive, ghost-cells, and arrow) of a task-based heterogeneous (CPU and GPU) application that simulates the flow of an incompressible Newtonian fluid with constant viscosity. All implementations rely on the StarPU runtime, and we use the StarVZ toolkit to conduct comprehensive performance analysis. Results indicate that the ghost cell strategy provides the best speedup (77x) considering the simulation time when the GPU resources still have available memory. However, the arrow strategy achieves better results when the simulation data increases.
机译:在当代异构集群中执行的并行应用是编码和优化的复杂性。基于任务的编程模型是处理编码复杂性的替代方案。该模型包括通过定向的非循环图将问题域与依赖关系拆分为任务,并将该组任务组提交给运行时调度程序,以动态地映射到资源的每个任务。我们认为计算流体动力学应用在科学计算中是典型的,但是通过采用基于任务的编程模型的设计不够利用。本文介绍了基于任务的并行策略,可用于针对异构多CPU / Multi-GPU计算资源的简单CFD应用程序。我们设计,开发,评估和比较任务的异构(CPU和GPU和GPU)应用的三个并联策略(天真,幽灵 - 电池和箭头)的性能,该应用程序模拟具有恒定粘度的不可压缩的牛顿流体的流量。所有实现依赖于Starpu运行时,我们使用Starvz Toolkit进行全面的性能分析。结果表明,考虑到GPU资源仍然可用内存时,幽灵单元策略提供了最佳加速(77倍)。但是,箭头策略在模拟数据增加时实现了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号