首页> 外文期刊>Concurrency, practice and experience >Detection of malicious code using the direct hashing and pruning and support vector machine
【24h】

Detection of malicious code using the direct hashing and pruning and support vector machine

机译:使用直接散列和修剪和支持向量机检测恶意代码

获取原文
获取原文并翻译 | 示例

摘要

Although open application programming interfaces (APIs) have been improved by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been conducted to characterize the behavior of malicious code based on API data and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data. To detect mutated malicious code in this manner requires a lot of time and has a high false detection rate (see "Detection of malicious code using the FP-growth algorithm and SVM," a paper presented at The First International Conference on Software and Smart Convergence, 2017). Herein, we propose a method that analyzes and detects malicious code using association rule mining and a support vector machine (SVM). The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the portable executable (PE) file, grouping patterns using the direct hashing and pruning (DHP) algorithm, and classifying malicious and normal files using the SVM. The study shows that sensitivity was 71% and precision was 77% when using a single SVM model. Using the association rules and SVM model, the sensitivity was increased to 77% and the precision to 81%.
机译:虽然通过软件行业的进步改进了开放应用程序编程接口(API),但不同类型的恶意代码也增加了。因此,已经进行了许多研究以表征基于API数据的恶意代码的行为,并确定恶意代码是否包括在特定的可执行文件中。现有方法通过分析签名数据来检测恶意代码。以这种方式检测突变的恶意代码需要大量的时间,并且具有高误检测率(参见“使用FP-Grangic算法和SVM检测恶意码”,“在第一届软件和智能收敛会议上提供的一篇论文,2017)。在此,我们提出了一种使用关联规则挖掘和支持向量机(SVM)分析和检测恶意代码的方法。该方法通过在便携式可执行(PE)文件中挖掘恶意和普通代码API的规则,使用直接散列和修剪(DHP)算法进行分组模式来降低假检测速率,并使用SVM对恶意和普通文件进行分组。该研究表明,使用单个SVM模型时,敏感性为71%,精度为77%。使用关联规则和SVM模型,灵敏度增加到77%,精度为81%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号