首页> 外文期刊>Concurrency, practice and experience >Deep neural network model construction with interactive code reuse and automatic code transformation
【24h】

Deep neural network model construction with interactive code reuse and automatic code transformation

机译:互动码重用和自动代码转换的深度神经网络模型施工

获取原文
获取原文并翻译 | 示例

摘要

Many application developers have been recently interested in applying deep learning techniques to their works but have little knowledge and experience on them. This paper presents the methods for a GUI-based modeling tool to easily build deep learning models and automatically transform them into executable program codes. For reuse of existing deep learning codes, it introduces a method that imports such a program code, extracts the deep learning model architecture, and transforms it into a graphical representation that can be modified on a graphical interface. Meanwhile, a deep learning model with many layers is difficult to be visualized on a small display screen. To handle the difficulty, it proposes a method to identify the submodules called articulable subgraphs in a deep learning model and to organize the deep learning model into a hierarchical architecture using the nesting relationships of articulable subgraphs. It introduces a method to identify frequent substractures as well as articulable subgraphs as building blocks for deep learning models for levelwise views. The hierarchical representation easily enables to build deep learning models with many layers. The GUI-based modeling tool employing the proposed methods makes nonexpert developers easily use deep learning techniques in their practical applications.
机译:许多应用程序开发人员最近对他们的作品应用了深入学习技巧,但对它们有很少的知识和经验。本文介绍了基于GUI的建模工具的方法,以便轻松构建深度学习模型,并自动将它们转换为可执行程序代码。为了重用现有的深度学习代码,它引入了一种导入这样的程序代码的方法,提取深度学习模型架构,并将其转换为可以在图形界面上修改的图形表示。同时,在小型显示屏上难以可视化具有许多层的深层学习模型。为了处理困难,提出了一种方法来识别深入学习模型中称为可铰接子图的子模块的方法,并使用易于铰接子图的嵌套关系将深度学习模型组织成分层架构。它介绍了一种识别频繁的子系统的方法以及易于子图作为逐级视图的深度学习模型的构建块。分层表示容易启用具有许多层的深度学习模型。采用所提出的方法的基于GUI的建模工具使得NONExpert开发人员在实际应用中轻松使用深度学习技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号