首页> 外文期刊>Concurrency, practice and experience >Energy-aware task scheduling with time constraint for heterogeneous cloud datacenters
【24h】

Energy-aware task scheduling with time constraint for heterogeneous cloud datacenters

机译:与异构云数据中心的时间约束能量感知任务调度

获取原文
获取原文并翻译 | 示例

摘要

Energy optimization with time constraint has become a timely and significant challenge for the datacenters. In this paper, a hardware and software collaborative optimization strategy is implemented to minimize the energy cost while satisfying the time constraint of the datacenters. In the hardware aspect, a DVFS-capable CPU/GPU/FPGA heterogeneous computing infrastructure is built. This infrastructure can adjust its hardware characteristics dynamically in terms of the software run-time contexts so that the applications can be executed efficiently with less time and lower energy cost. In the software aspect, a deadline-aware energy-efficient task scheduling algorithm based on the Q-learning approach is investigated. This algorithm can adjust its searching directions smartly in terms of the environment feedback so that it can achieve better optimization performance comparing with the traditional genetic algorithm. However, its convergence time is long due to the large amount of training work, making it inappropriate to be applied in the large-scale datacenters. To ease this problem, we proposed another new algorithm named Rapid Local Convolution Optimization (RLCO) and combine it with the Q-learning algorithm. By doing this, the convergence time of the Q-learning mechanism can be decreased significantly. We conducted both the simulation and real-world experiments to evaluate the performance of our approaches, and the results proved the proposed algorithm running on the DVFS-capable heterogeneous hardware architecture could decrease the energy cost of the datacenter significantly even if the datacenter is in large scale.
机译:随着时间限制的能量优化已成为数据中心的及时和重大挑战。在本文中,实施了硬件和软件协作优化策略,以最小化能量成本,同时满足数据中心的时间约束。在硬件方面,构建了一种能够的DVFS的CPU / GPU / FPGA异构计算基础架构。此基础架构可以根据软件运行时上下文动态调整其硬件特性,以便可以以更少的时间和更低的能量成本有效地执行应用程序。在软件方面,研究了基于Q学习方法的截止日期感知节能任务调度算法。该算法可以在环境反馈方面巧妙地调整其搜索方向,以便与传统的遗传算法相比,实现更好的优化性能。但是,由于大量的培训工作,它的收敛时间很长,使得在大规模的数据中心应用不适当。为了缓解这个问题,我们提出了另一种名为Lock Local Convolution Optimization(RLCo)的新算法,并将其与Q学习算法相结合。通过这样做,Q学习机制的收敛时间可以显着降低。我们进行了仿真和现实世界的实验,以评估我们的方法的性能,结果证明了在DVFS的异构硬件架构上运行的建议算法可以显着降低数据中心的能量成本,即使数据中心大大规模。

著录项

  • 来源
    《Concurrency, practice and experience》 |2020年第18期|e5437.1-e5437.17|共17页
  • 作者单位

    Wuhan Univ Technol Hubei Key Lab Transport Internet Things Wuhan 430070 Peoples R China;

    Wuhan Univ Technol Hubei Key Lab Transport Internet Things Wuhan 430070 Peoples R China;

    Wuhan Univ Technol Hubei Key Lab Transport Internet Things Wuhan 430070 Peoples R China;

    Wuhan Univ Technol Hubei Key Lab Transport Internet Things Wuhan 430070 Peoples R China;

    Wuhan Univ Technol Hubei Key Lab Transport Internet Things Wuhan 430070 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    datacenters; energy optimization; heterogeneous computing; task scheduling;

    机译:数据中心;能量优化;异构计算;任务调度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号