首页> 外文期刊>Concurrency, practice and experience >Users' location analysis based on Chinesemobile socialmedia
【24h】

Users' location analysis based on Chinesemobile socialmedia

机译:用户的“基于中国移动社交媒体的位置分析

获取原文
获取原文并翻译 | 示例

摘要

After the rapid development for more than 20 years, Internet has gradually become the main carrier of people's information and behaviors in people's daily life. In addition, the innovation and popularization of smartphone GPS makes user location information much more available and accurate, helping it to create remarkable values by which people are attracted to focus on social media-related data mining and applications. However, because of the sparsity of social media geographical information, direct inferences of locations have plenty of difficulties. Under the background of big data, this research has revised the UGC-LI model in the preprocess of texts and the creation of the local dictionaries in which we take existed local dictionaries from the Internet into consideration, with the purpose of the inferences for users' and texts' locations. At the time of writing, through the crawler, we acquire users' personal information, the blog content, and customer relationships' (follows, fans) information more than 410 331 pieces from Sina Weibo. The experimental results show that the recall rate of the user location inference is 86.0%, whereas the precise rate is 77.4%, and the accuracy of text posted location inference is 66.8%. Compared with some other related algorithms, this revised model has comparatively better results in location inference for users and text publication.
机译:经过20多年来的快速发展,互联网逐渐成为人民日常生活中人民信息和行为的主要承运人。此外,智能手机GPS的创新和普及使用户位置信息更具可用和准确性,帮助它创造出于专注于社交媒体相关的数据挖掘和应用程序的卓越价值。然而,由于社交媒体地理信息的稀疏性,地点的直接推论有很多困难。在大数据的背景下,该研究在文本的预处理中修订了UGC-LI模型,并创建了从互联网上存在的本地词典,考虑到用户的推论目的和文本的位置。在撰写本文时,通过履历,我们从新浪微博获得用户的个人信息,博客内容和客户关系“(如下,粉丝)信息超过410 331件。实验结果表明,用户位置推断的召回率为86.0%,而精确率为77.4%,文本张贴位置推断的准确性为66.8%。与一些其他相关算法相比,该修订模型在用户和文本发布的位置推理中具有相对较好的结果。

著录项

  • 来源
    《Concurrency, practice and experience》 |2020年第13期|e4669.1-e4669.8|共8页
  • 作者单位

    East China Univ Technol Jiangxi Engn Lab Radioact Geosci & Big Data Techn Nanchang Jiangxi Peoples R China|Wuhan Univ Int Sch Software Wuhan 430079 Peoples R China;

    Wuhan Univ Int Sch Software Wuhan 430079 Peoples R China;

    Wuhan Univ Int Sch Software Wuhan 430079 Peoples R China;

    East China Univ Technol Jiangxi Engn Lab Radioact Geosci & Big Data Techn Nanchang Jiangxi Peoples R China;

    East China Univ Technol Jiangxi Engn Lab Radioact Geosci & Big Data Techn Nanchang Jiangxi Peoples R China;

    East China Univ Technol Jiangxi Engn Lab Radioact Geosci & Big Data Techn Nanchang Jiangxi Peoples R China;

    Wuhan Univ Int Sch Software Wuhan 430079 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    big data; location mining; mobile social media; web crawler;

    机译:大数据;位置挖掘;移动社交媒体;网爬行者;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号