首页> 外文期刊>Concurrency and computation: practice and experience >Using triangles and latent factor cosine similarity prior to improve community detection inmulti-relational social networks
【24h】

Using triangles and latent factor cosine similarity prior to improve community detection inmulti-relational social networks

机译:在改善多关系社交网络中的社区检测之前,使用三角形和潜在因子相似性

获取原文
获取原文并翻译 | 示例

摘要

Community detection is a key to understanding the structure of complex networks. Communities,or clusters, are groups of vertices having higher probability of being connected to each otherthan to the members in other groups. Considering the importance of triangle structures, we firstpropose ğœ-tensor tomodel ordinary relationships and triangle relationships simultaneously.Then,we propose a simple but effective latent factor prior, ie, latent factor cosine similarity prior, toimprove community detection. The latent factor cosine similarity prior is a kind of statistics ofthe well-defined synthetic multi-relational social networks. It is based on a key observation thatmost latent feature factors of intra-group members in these networks are highly similar accordingto cosine similarity measure. Using this prior along with the RESCAL tensor factorization model,we can obtain a superior latent feature factor matrix. Moreover, N-RESCAL model, a variant ofRESCAL model, and its corresponding algorithm N-RESCAL-ALS are proposed for the simplicityand the removal of the limit of cosine similarity. Once the latent factor matrix is obtainedby factorizing ğœ-tensor using N-RESCAL model, we apply agglomerative clustering algorithm forcommunity discovery.We call this framework as TNRA. Experiment results on several real-worlddatasets are surprisingly promising, clearly demonstrating the power of the proposed prior andthe effectiveness of our proposed methods.
机译:社区检测是理解复杂网络结构的关键。社区,或集群,是具有较高概率彼此连接的顶点组而不是其他群体的成员。考虑到三角形结构的重要性,我们首先提出ğœ - 张富主组织同时的普通关系和三角关系。然后,我们提出了一个简单但有效的潜在因子,即先前的潜在因子余弦相似性,改善社区检测。潜在因子余弦相似性先前是一种统计数据明确定义的合成多关系社交网络。它基于一个关键观察这些网络中组内成员的最潜在的特征因素非常相似余弦相似度措施。在Rescal TensoR因分解模型中使用此,我们可以获得卓越的潜在特征因子矩阵。此外,n-Rescal模型,一种变体Rescal模型,以及其相应的算法N-Rescal-Als为简单性提出并去除余弦相似度的极限。一旦获得潜在因子矩阵通过使用n-Rescal模型来分解ğœ张镜,我们应用了凝聚聚类算法社区发现。我们称这个框架称为TNRA。几个现实世界的实验结果数据集令人惊讶的是有希望的,清楚地展示了提议的求职力我们提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号