首页> 外文期刊>Concurrency, practice and experience >Image steganalysis based on convolutional neural network and feature selection
【24h】

Image steganalysis based on convolutional neural network and feature selection

机译:基于卷积神经网络和特征选择的图像隐写分析

获取原文
获取原文并翻译 | 示例

摘要

Steganalysis is to detect whether or not the seemly innocent image hiding message. It is an important research topic in information security. With the development of steganography technology, steganalysis becomes more and more difficult. Some steganalysis methods have been proposed to improve the performance. Most research work concentrates on special steganography information detection and the image steganography features are designed manually. Few research works concentrate on universal steganalysis methods. In this paper, as the first several attempts, a novel image steganalysis method based on deep neural network is proposed. First, image high-frequency features are extracted with wavelet transformation method because that most image hiding message are high frequency. Second, high-dimensional image steganography features are extracted with deep neural networks according to the high-frequency images and informative features combination is selected with a novel feature selection method based on entropy. Then, a parallel SVM model is proposed to build the steganalysis model based on large scale training samples. At last, the efficiency of the proposed method is illustrated through analyzing a practical image steganalysis example.
机译:隐写分析用于检测看似无害的图像隐藏消息。这是信息安全的重要研究课题。随着隐写术技术的发展,隐写分析变得越来越困难。已经提出了一些隐写分析方法来改善性能。大多数研究工作集中于特殊的隐写术信息检测,并且图像隐写术功能是手动设计的。很少有研究工作专注于通用隐写分析方法。本文作为前几次尝试,提出了一种基于深度神经网络的图像隐写分析新方法。首先,利用小波变换方法提取图像的高频特征,因为大多数图像隐藏信息都是高频的。其次,根据高频图像利用深度神经网络提取高维图像隐写特征,并利用基于熵的新颖特征选择方法选择信息特征组合。然后,提出了一个并行的支持向量机模型来建立基于大规模训练样本的隐写分析模型。最后,通过分析一个实际的图像隐写实例,说明了该方法的有效性。

著录项

  • 来源
    《Concurrency, practice and experience》 |2020年第5期|e5469.1-e5469.10|共10页
  • 作者

  • 作者单位

    Univ Shanghai Sci & Technol Sch Opt Elect & Comp Engn Shanghai Key Lab Modern Opt Syst Engn Res Ctr Opt Instrument & Syst Minist Educ Shanghai 200093 Peoples R China|China Univ Petr Coll Sci Qingdao 266580 Shandong Peoples R China;

    Shanghai Univ Coll Liberal Arts Dept Hist Shanghai Peoples R China;

    Shandong Yingcai Univ Jinan Shandong Peoples R China;

    China Univ Petr Coll Sci Qingdao 266580 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    convolutional neural network; feature selection; image steganalysis; MapReduce; wavelet transformation;

    机译:卷积神经网络特征选择;图像隐写分析MapReduce;小波变换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号