首页> 外文期刊>Concurrency, practice and experience >A job scheduling algorithm for delay and performance optimization in fog computing
【24h】

A job scheduling algorithm for delay and performance optimization in fog computing

机译:雾计算中延迟和性能优化的作业调度算法

获取原文
获取原文并翻译 | 示例

摘要

Due to an ever-increasing number of Internet of Everything (IoE) devices, massive amounts of data are produced daily. Cloud computing offers storage, processing, and analysis services for handling of such large quantities of data. The increased latency and bandwidth consumption is not acceptable to real-time applications like online gaming, smart health, video surveillance, etc. Fog computing has emerged to overcome the increase in latency and bandwidth consumption in Cloud computing. Fog Computing provides storage, processing, networking, and analytical services at the edge of a network. As Fog Computing is still in its infancy, its significant challenges include resource-allocation and job-scheduling. The Fog devices at the edge of the network are resource-constrained. Therefore, it is important to decide the assignment and scheduling of a job on a Fog node. An efficient job scheduling algorithm can reduce energy consumption and response time of an application request. In this paper, we propose a novel Fog computing scheduler that supports service-provisioning for Internet of Everything, which optimizes delay and network usage. We present a case study to optimally schedule the requests of Internet of Everything devices on Fog devices and efficiently address their demands on available resources on every Fog device. We consider delay and energy consumption as performance metrics and evaluate the proposed scheduling algorithm using iFogSim in comparison with existing approaches. The results show that the delay and network usage of the proposed scheduler improve by 32% and 16%, respectively, in comparison with FCFS approach.
机译:由于万物互联(IoE)设备的数量不断增加,因此每天都会产生大量数据。云计算提供存储,处理和分析服务,用于处理如此大量的数据。增加的延迟和带宽消耗对于在线游戏,智能健康,视频监控等实时应用是不可接受的。雾计算已经出现,以克服云计算中延迟和带宽消耗的增加。 Fog Computing在网络边缘提供存储,处理,联网和分析服务。由于Fog Computing仍处于起步阶段,其重大挑战包括资源分配和作业调度。网络边缘的Fog设备受资源限制。因此,决定Fog节点上作业的分配和调度很重要。高效的作业调度算法可以减少能耗和应用程序请求的响应时间。在本文中,我们提出了一种新颖的Fog计算调度程序,该程序支持万物互联的服务提供,从而优化了延迟和网络使用率。我们提出一个案例研究,以最佳地安排Fog设备上的Internet的所有设备的请求,并有效地解决它们对每个Fog设备上可用资源的需求。我们将延迟和能耗视为性能指标,并与现有方法相比,使用iFogSim评估了建议的调度算法。结果表明,与FCFS方法相比,该调度程序的延迟和网络使用率分别提高了32%和16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号