首页> 外文期刊>Concurrency and computation: practice and experience >Improving resolution ofmedical images with deep dense convolutional neural network
【24h】

Improving resolution ofmedical images with deep dense convolutional neural network

机译:利用深层密集卷积神经网络提高医学图像的分辨率

获取原文
获取原文并翻译 | 示例

摘要

Doctors always desire high-resolution medical images to have accurate diagnosis. Super-resolution (SR) is a technology that can improve the resolution of medical images. Convolutional neural network (CNN)-based SR methods have achieved desired performance in natural images. In this paper, we apply a deep dense SR (DDSR) convolutional neural networks model to two types of medical images, including Computerized Tomography (CT) images and Magnetic Resonance imaging (MRI) images. This network densely connects every hidden layer to learn high-level features, which was first proposed for object recognition. A set of medical images is used for experiments. We compare the performance of DDSR with three state-of-the-art SR network models, including SR Convolutional Neural Network (SRCNN), Fast SR Convolutional Neural Network (FSRCNN), and Very Deep SR Convolutional Neural Network (VDSR). Both the objective indices and subjective evaluations are used for comparison. The results show that the proposed network has better performances both on CT and MRI images.
机译:医生总是希望获得高分辨率的医学图像以进行准确的诊断。超分辨率(SR)是一种可以提高医学图像分辨率的技术。基于卷积神经网络(CNN)的SR方法已在自然图像中实现了所需的性能。在本文中,我们将深度密集SR(DDSR)卷积神经网络模型应用于两种类型的医学图像,包括计算机断层扫描(CT)图像和磁共振成像(MRI)图像。该网络紧密连接每个隐藏层,以学习高级功能,这是最初提出用于对象识别的。一组医学图像用于实验。我们将DDSR与三种最新的SR网络模型(包括SR卷积神经网络(SRCNN),快速SR卷积神经网络(FSRCNN)和超深度SR卷积神经网络(VDSR))的性能进行了比较。客观指标和主观评价都用于比较。结果表明,所提出的网络在CT和MRI图像上均具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号