首页> 外文期刊>Concurrency, practice and experience >An efficient method for autoencoder-based collaborative filtering
【24h】

An efficient method for autoencoder-based collaborative filtering

机译:基于自动编码器的协作过滤的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering (CF) is a widely used technique in recommender systems. With rapid development in deep learning, neural network-based CF models have gained great attention in the recent years, especially autoencoder-based CF model. Although autoencoder-based CF model is faster compared with some existing neural network-based models (eg, Deep Restricted Boltzmann Machine-based CF), it is still impractical to handle extremely large-scale data. In this paper, we practically verify that most non-zero entries of the input matrix are concentrated in a few rows. Considering this sparse characteristic, we propose a new method for training autoencoder-based CF.We run experiments on two popular datasetsMovieLens 1MandMovie- Lens 10 M. Experimental results show that our algorithm leads to orders of magnitude speed-up for training (stacked) autoencoder-based CF model while achieving comparable performance compared with existing state-of-the-artmodels.
机译:协作过滤(CF)是推荐系统中广泛使用的技术。随着深度学习的飞速发展,基于神经网络的CF模型近年来受到了广泛的关注,尤其是基于自动编码器的CF模型。尽管与一些现有的基于神经网络的模型(例如,基于深度受限玻尔兹曼机器的CF)相比,基于自动编码器的CF模型要快一些,但处理超大规模数据仍然不切实际。在本文中,我们实际上验证了输入矩阵的大多数非零条目都集中在几行中。考虑到这种稀疏特性,我们提出了一种训练基于自动编码器的CF的新方法。我们在两个流行的数据集MovieLens 1M和Movie- Lens 10 M上进行了实验。实验结果表明,我们的算法导致训练(堆叠)自动编码器的速度提高了几个数量级基于CF的CF模型,同时与现有的最新模型相比具有可比的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号