首页> 外文期刊>Concurrency and computation: practice and experience >Energy-efficient quantum-inspired stochastic Q-HypE algorithm for batch-of-stochastic-tasks on heterogeneous DVFS-enabled processors
【24h】

Energy-efficient quantum-inspired stochastic Q-HypE algorithm for batch-of-stochastic-tasks on heterogeneous DVFS-enabled processors

机译:高能效量子启发式随机Q-HypE算法,用于支持DVFS的异构处理器上的批处理随机任务

获取原文
获取原文并翻译 | 示例

摘要

Scheduling on dynamic voltage and frequency scaling enabled processors to determine thePareto-optimal solutions with optimized makespan and energy consumption demands fastermulti-objective scheduling algorithms. In general, the problem of multi-objective optimization,ie, finding the Pareto-optimal solutions to optimize two or more QoS parameters, has beenproven to be an NP-complete problem. In this work, we propose a novel energy-efficientquantum-inspired stochastic Q-HypE algorithm to schedule the batch-of-stochastic-tasks (BoT)on DVFS-enabled processors with the aim to optimize the makespan of BoT as well as theenergy consumption of processors. The stochastic processing times of tasks are drawn fromindependent probability distributions. The proposed Q-HypE algorithm evolves from combinedcharacteristics of quantum computing and a hypervolume based multi-objective optimizationHypE algorithm. The proposed Q-HypE algorithm simultaneously minimizes the makespanand energy consumption of the Pareto-optimal solutions whereas the dynamics of quantumcomputing accelerate the process of HypE to further minimize the overheads of hypervolumeestimation. Experimental results reveal the effectiveness of the proposed Q-HypE algorithmboth in terms of the number and quality of solutions offered.
机译:动态电压和频率缩放的调度使处理器能够确定具有优化的制造时间和能耗的帕累托最优解决方案,因此需要更快的多目标调度算法。通常,多目标优化问题(即找到Pareto最优解以优化两个或多个QoS参数)已被证明是NP完全问题。在这项工作中,我们提出了一种新的,以能效量子为灵感的随机Q-HypE算法,用于调度启用DVFS的处理器上的批量随机任务(BoT),以优化BoT的制造时间和能耗处理器。任务的随机处理时间是从独立的概率分布中得出的。提出的Q-HypE算法是从量子计算和基于超量的多目标优化HypE算法的组合特性发展而来的。提出的Q-HypE算法同时最小化了Pareto最优解的makepanand能量消耗,而量子计算的动力学加快了HypE的过程,从而进一步最小化了超量估计的开销。实验结果从所提供解决方案的数量和质量方面都揭示了所提出的Q-HypE算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号