首页> 外文期刊>Concurrency and computation: practice and experience >An improved quantitative recurrence analysis using artificial intelligence based image processing applied to sensor measurements
【24h】

An improved quantitative recurrence analysis using artificial intelligence based image processing applied to sensor measurements

机译:使用基于人工智能的图像处理应用于传感器测量的改进的定量递归分析

获取原文
获取原文并翻译 | 示例

摘要

Artificial intelligence hasbeenwidely used in reliability analysis for industrial equipment.Thegeartransmission systems are the most common components inminingmachines.Asimple fault in thegearboxmay break down the mining machine for couple of days, resulting in enormous economicloss. Condition monitoring techniques can prevent unscheduled failures in the gear transmissionsystems. Although many techniques have been developed for gearbox fault diagnosis, onechallenging task that the conditionmonitoring still faces ishowto extractquantitative fault indicators.To this end, this paper proposes an improved quantitative recurrence analysis (IQRA) basedon artificial intelligence theory. This new method takes advantages of chaos and fractal propertiesof the gear transmission system to obtain the recurrence of the system. The characteristicsof different gear faults can be observed through the visualization of recurrence. Quantitativeparameters can be then calculated from the recurrence plots. Experimental data acquired from agearbox under variable working conditions was used to evaluate the proposed method. The analysisresults demonstrate that the proposed IQRA method is able to effectively quantify differentthe gear faults.
机译:人工智能已广泛用于工业设备的可靠性分析中。齿轮传动系统是采矿机中最常见的组件。齿轮箱中的简单故障可能会导致采矿机连续几天故障,从而造成巨大的经济损失。状态监视技术可以防止齿轮传动系统中的意外故障。尽管已经开发出许多用于齿轮箱故障诊断的技术,但是如何监测状态监测仍然面临的挑战性任务是如何提取定量故障指标。为此,本文提出了一种基于人工智能理论的改进的定量递归分析(IQRA)。这种新方法利用了齿轮传动系统的混沌和分形特性来获得系统的重现性。通过重复出现的可视化可以观察到不同齿轮故障的特征。然后可以从重复图计算定量参数。在可变工作条件下从agearbox获得的实验数据用于评估该方法。分析结果表明,所提出的IQRA方法能够有效地量化不同齿轮故障。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2019年第10期|e4858.1-e4858.7|共7页
  • 作者单位

    School of Mechatronic Engineering and Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment China University of Mining and Technology Xuzhou 221116 China Department of Mechanical and Industrial Engineering University of Iowa Iowa City Iowa;

    School of Mechatronic Engineering and Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment China University of Mining and Technology Xuzhou 221116 China;

    Department of Electrical Electronic and Computer Engineering University of Pretoria Pretoria 0002 South Africa;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    artificial intelligence; chaos and bifurcation; reliability analysis; soft computing;

    机译:人工智能;混乱和分叉;可靠性分析;软计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号