首页> 外文期刊>Concurrency and computation: practice and experience >A comprehensive performance evaluation of the BinLPT workload-aware loop scheduler
【24h】

A comprehensive performance evaluation of the BinLPT workload-aware loop scheduler

机译:BinLPT工作负载感知循环调度程序的综合性能评估

获取原文
获取原文并翻译 | 示例

摘要

Workload-aware loop schedulers were introduced to deliver better performance than classicalloop scheduling strategies. However, they presented limitations such as inflexible built-inworkload estimators and suboptimal chunk scheduling. Targeting these challenges, we proposedpreviously a workload-aware scheduling strategy called BinLPT, which relies on three features:(ⅰ) user-supplied estimations of the workload of the loop; (ⅱ) a greedy heuristic that adaptivelypartitions the iteration space in several chunks; and (ⅲ) a scheduling scheme based on theLongest Processing Time (LPT) rule and on-demand technique. In this paper, we present twonew contributions to the state-of-the-art. First, we introduce a multiloop support featureto BinLPT, which enables the reuse of estimations across loops. Based on this feature, weintegrated BinLPT into a real-world elastodynamics application, and we evaluated it runningon a supercomputer. Second, we present an evaluation of BinLPT using simulations as wellas synthetic and application kernels. We carried out this analysis on a large-scale NUMAmachine under a variety of workloads. Our results revealed that BinLPT is better at balancingthe workloads of the loop iterations and this behavior improves as the algorithmic complexityof the loop increases. Overall, BinLPT delivers up to 37.15% and 9.11% better performancethan well-known loop scheduling strategies, for the application kernels and the elastodynamicssimulation, respectively.
机译:引入了可识别工作负载的循环调度程序,以提供比传统 r nloop调度策略更好的性能。但是,他们提出了一些局限性,例如不灵活的内置 r nworkload估计量和次优的块调度。针对这些挑战,我们先前提出了一种称为BinLPT的工作负载感知调度策略,该策略依赖于以下三个功能:用户提供的循环工作负载估计; (ⅱ)一种贪婪的启发式方法,可以将迭代空间自适应地 r n划分为几个块; (ⅲ)基于最长处理时间(LPT)规则和按需技术的调度方案。在本文中,我们提出了对最新技术的两个新的贡献。首先,我们为BinLPT引入了多循环支持功能,该功能可以跨循环重用估计值。基于此功能,我们将BinLPT集成到了现实世界的弹性动力学应用程序中,并在非超级计算机上对其进行了评估。其次,我们使用模拟以及合成和应用程序内核对BinLPT进行评估。我们在各种工作负载下的大型NUMA r n计算机上进行了此分析。我们的结果表明,BinLPT在平衡循环迭代的工作负载方面更胜一筹,并且随着循环算法复杂度的提高,这种行为也会得到改善。总体而言,对于应用程序内核和弹性动力学,BinLPT的性能分别比众所周知的循环调度策略高出37.15%和9.11%。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2019年第18期|e5170.1-e5170.21|共21页
  • 作者单位

    Distributed Systems Research Lab (LaPeSD),Universidade Federal de Santa Catarina,Florianopolis, Brazil Computer Architecture and ParallelProcessing Team (CArT), PontificiaUniversidade Catolica de Minas Gerais, BeloHorizonte, Brazil Compiler Optimization and Run-time Systems(CORSE), Universite Grenoble Alpes, CNRS,Inria, Grenoble INP, LIG, Grenoble, France;

    LNCC (National Laboratory for ScientificComputing), Petropolis, Brazil;

    Distributed Systems Research Lab (LaPeSD),Universidade Federal de Santa Catarina,Florianopolis, Brazil;

    Distributed Systems Research Lab (LaPeSD),Universidade Federal de Santa Catarina,Florianopolis, Brazil;

    Computer Architecture and ParallelProcessing Team (CArT), PontificiaUniversidade Catolica de Minas Gerais, BeloHorizonte, Brazil;

    Compiler Optimization and Run-time Systems(CORSE), Universite Grenoble Alpes, CNRS,Inria, Grenoble INP, LIG, Grenoble, France;

    Compiler Optimization and Run-time Systems(CORSE), Universite Grenoble Alpes, CNRS,Inria, Grenoble INP, LIG, Grenoble, France LNCC (National Laboratory for ScientificComputing), Petropolis, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    loop scheduling; OpenMP; performance evaluation; workload-aware;

    机译:循环调度;openmp;绩效评估;工作负载感知;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号